

Global Multiple Myeloma Academy – Day 2

Emerging and Practical Concepts in Multiple Myeloma June 18–19, 2021

Session Open

Rafael Fonseca, MD

Chair

Irene Ghobrial, MD Dana-Farber Cancer Institute, USA

Vania Hungria, MD, PhD São Germano Clinic, Brazil

Keith Stewart, MBChB, MBA Princess Margaret Cancer Centre, Canada

María-Victoria Mateos, MD, PhD University of Salamanca, Spain

Rafael Fonseca, MD Mayo Clinic Cancer Center, USA

Natalia Schütz, MD, MS Instituto Universitario del Hospital Italiano de Buenos Aires, Argentina

Faculty

Humberto Martínez Cordero, MD, MSc National Cancer Institute, Colombia

Jorge Vela-Ojeda, MD, PhD CMN La Raza, Mexico

Objectives of the Program

Share key data from recent conferences that could lead to improved treatment and management for patients with myeloma Discuss early treatment strategies for smoldering myeloma and initial therapies for multiple myeloma Provide insights into the evolving role of minimal residual disease (MRD) monitoring in the management of patients with multiple myeloma

Present the latest research on identifying multiple myeloma patients at high risk for early relapse, and management strategies for early relapse Discuss the benefits and limitations of current options for treating patients with multiple myeloma refractory to multiple therapeutic modalities

Bring in the regional multiple myeloma perspective

Agenda Day 2

Time (UTC –3)	Торіс	Speaker
6.00 РМ – 6.10 РМ 10 min	Session Open	Rafael Fonseca, MD
6.10 рм – 6.30 рм 20 min	 Identification and Special Considerations for High-Risk Multiple Myeloma Risk stratification, prognosis, and treatment choices (15 min; 5-min discussion) 	María-Victoria Mateos, MD, PhD
6.30 рм – 6.55 рм 25 min	 Management of Early Relapse of Multiple Myeloma Definition, prognosis, and treatment choices (15 min; 10-min discussion) 	Rafael Fonseca, MD
6.55 рм – 7.20 рм 25 min	 Management of Heavily Pretreated Multiple Myeloma Optimal use of treatment choices in relapsed/refractory multiple myeloma, excluding T-cell engagers (15 min; 10-min discussion) 	Keith Stewart, MBChB, MBA
7.20 РМ – 7.30 РМ 10 min	Break	
7.30 рм – 8.20 рм 50 min	 New and Future Therapies for Multiple Myeloma Promising new developments in relapsed/refractory MM Latest trial updates and upcoming new strategies; focus on BCMA-directed therapies (35 min; 15-min discussion) 	Irene Ghobrial, MD
8.20 РМ – 9.15 РМ 55 min	 Patient Case Discussion: Relapsed/Refractory Multiple Myeloma Cases from the region will be discussed with the faculty – "tumor board approach" Relapsed/refractory MM, treatment challenges in the region – Natalia Schütz (Arg) Case 1: Cristian Seehaus and Natalia Schütz (Arg) Case 2: Ana Luiza Miranda Silva Días and Vania Hungria (Bras) Case 3: Didier Larios Sanjuan and Humberto Martínez-Cordero (Col) Case 4: Sofía Sánchez and Jorge Vela-Ojeda (Mex) 	All faculty
9.15 РМ – 9.30 РМ 15 min	Session CloseARS questions	Rafael Fonseca, MD

What treatment belongs to the T-cell engagers category?

- 1. Melflufen
- 2. Belantamab
- 3. Ide-cel
- 4. Selinexor
- 5. Venetoclax

Which of the following combinations has not been tested in phase III clinical trials in RR MM?

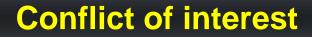
- 1. Dara-Pd
- 2. Elotuzumab-venetoclax and dexamethasone
- 3. Bortezomib, pomalidomide, and dexamethasone
- 4. Bortezomib plus daratumumab and dexamethasone
- 5. Carfilzomib plus lenalidomide and dexamethasone

Which statement(s) are true for the treatment of myeloma?

- A. There is a high rate of attrition (loss)
- B. Several drug trials show that 2 drugs can be as good as 3 in terms of efficacy
- C. Myeloma is a heterogeneous disease with increased rates of *p53* abnormalities with progression
- D. All of the above
- E. A and C

Identification and Special Considerations for High-Risk Multiple Myeloma

María-Victoria Mateos



University of Salamanca

Identification and special considerations for high-risk multiple myeloma: Risk stratification, prognosis, and treatment choices

María-Victoria Mateos University Hospital of Salamanca Salamanca, Spain

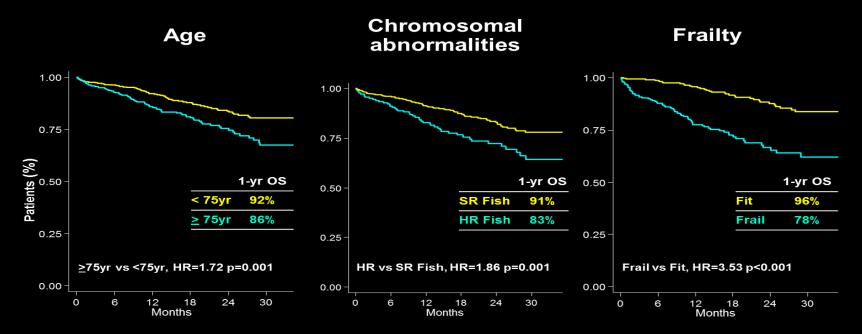
Honoraria derived from lectures and participation in advisory boards from Janssen, Celgene, Takeda, Amgen, GSK, AbbVie, Pfizer, Regeneron, Roche, Sanofi, Oncopeptides, Seagen

What are factors that determine high risk in a patient with myeloma?

Patient-specific factors

- Age
- Comorbidities, eg, renal failure, spinal cord compression

Disease-specific factors


- ISS stage/R-ISS
- Cytogenetic abnormalities
- Extramedullary disease
- Plasma cell leukemia
- Lactate dehydrogenase level

ISS, International Staging System.

National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Multiple myeloma. Version 5.2021. 2021.

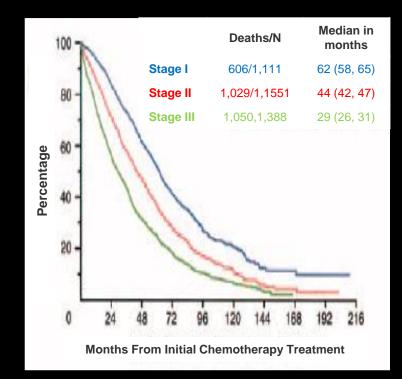
Subgroup analysis in all patients

Fit defined as: score=0 Frail defined as: score \geq 2 HR Fish: presence of t(4;14) or t(14;16) or del 17q13

What are factors that determine high risk in a patient with myeloma?

Patient-specific factors

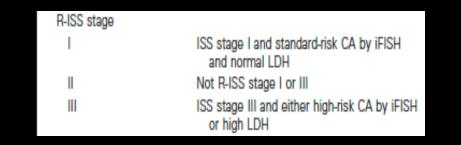
- Age
- Comorbidities, eg, renal failure, spinal cord compression

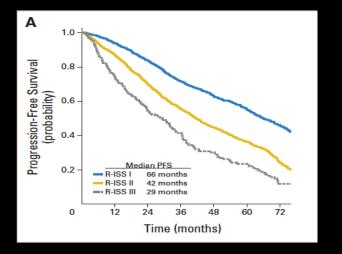

Disease-specific factors

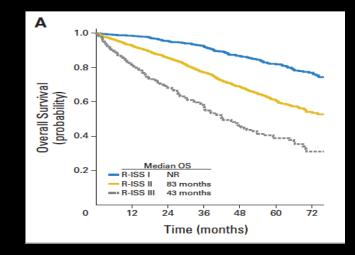
- ISS stage/R-ISS
- Lactate dehydrogenase level
- Cytogenetic abnormalities
- Extramedullary disease
- Plasma cell leukemia
- Response to treatment

International Staging System for MM

Stage	Criteria	Median Survival (months)
	Serum β₂-microglobulin < 3.5 mg/L Serum albumin ≥ 3.5 g/dL	62
-	Not stage I or III*	44
	Serum β_2 -microglobulin ≥ 5.5 mg/L	29


*There are two categories for stage II: serum β_2 -microglobulin < 3.5 mg/L but serum albumin < 3.5 g/dL; or serum β_2 -microglobulin 3.5 to < 5.5 mg/L irrespective of the serum albumin level.




ISS III, high LDH, and t(4;14) and/or del(17p) as a prognostic index for OS

Score	Definition	Percentage of overall population	Outcome	
0	Absence of adverse factors (neither high LDH, nor ISS III, nor t[4;14] and/or del[17p])	57%	4-year OS: 84%	
1	Presence of only 1 adverse factor (either high LDH, or ISS III, or t[4;14] and/or del[17p])	32%	4-year OS: 73%	
2	Presence of high LDH plus ISS III in the absence of t(4;14) and/or del(17p)	6%	4-year OS: 68%	
3	Presence of t(4;14) and/or del(17p) in addition to either ISS III or high LDH	5%	Median OS: 19 mo 3-year OS: 24%	

Revised International Staging System

High-risk CA includes the presence of del(17p) and/or t(4;14) and/or t(14;16).

Palumbo A, et al. J Clin Oncol. 2015;33(26):2863-2869.

Extramedullary disease

EMM entities	Definition	Clinical presentation			
Extramedullary disease ¹	Soft-tissue plasmacytoma or PC infiltration of an anatomical site distant from the bone marrow. Secondary to a hematogenous spread	Mainly affect the liver, skin, CNS, pleural effusion, kidneys, lymph nodes, pancreas,			

- Incidence: At diagnosis, 1.7-3.5%² At relapse, up to 10%
- There is no evidence that the incidence of plasmacytomas increases at relapse after allo trx or after exposure to novel agents-based combinations.³
- However, a better control of medullary disease with novel drugs can result into a more prolonged survival with a higher risk of extramedullary progression.
- To consider that, sometimes, plasmacytomas can develop on surgical scars.

1. Touzeau C, Moreau P. Blood. 2016;127(8):971-976; 2. Beksac M, et al. Haematologica. 2020;105(1):201-208; 3. Bladé J, et al. J Clin Oncol. 2011;29(28):3805-3812.

Plasma cell leukemia

EMM entities	Definition	Clinical presentation			
Plasma cell leukemia ¹	Aggressive variant of myeloma characterized by the presence of circulating plasma cells (>20% and/or absolute count >2 X 10 ⁹ /L).	Could be considered as EMM because of blood involvement. Extramedullary disease is also very common in PCL patients.			

- Primary PCL: no previous history of MM; <1-4% of all MM (crude incidence 0.04-0.05 /100.000 persons per year in EU)²
- Secondary PCL: leukemic transformation of relapsed refractory MM; (1% of all MM, about 12% of MM with high tumor burden)²
- Diferential diagnosis with reactive plasmacytosis as well as myeloma with circulating PCs³

1. Touzeau C, Moreau P. Blood. 2016;127(8):971-976; 2. Suska A, et al. Clin Hematol Int. 2020;2(4):133-142; 3. Albarracin F, Fonseca R. Blood Rev. 2011;25:107-112.

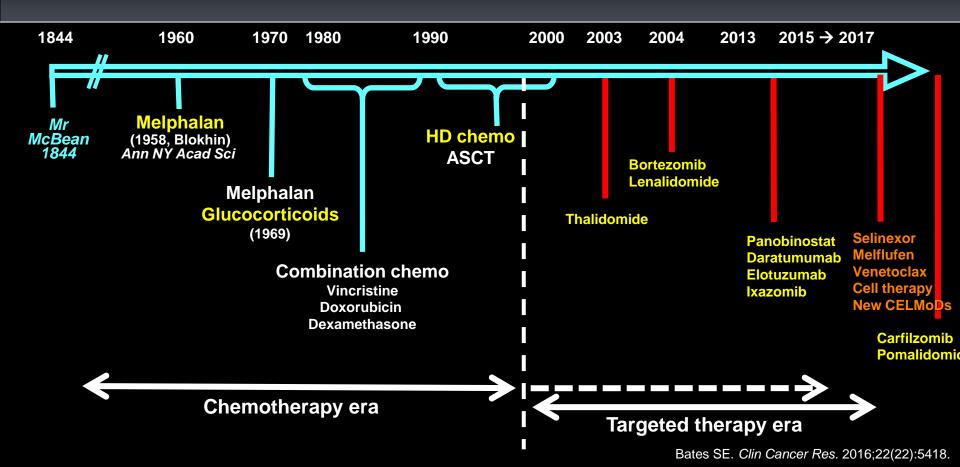
Cytogenetic abnormalities

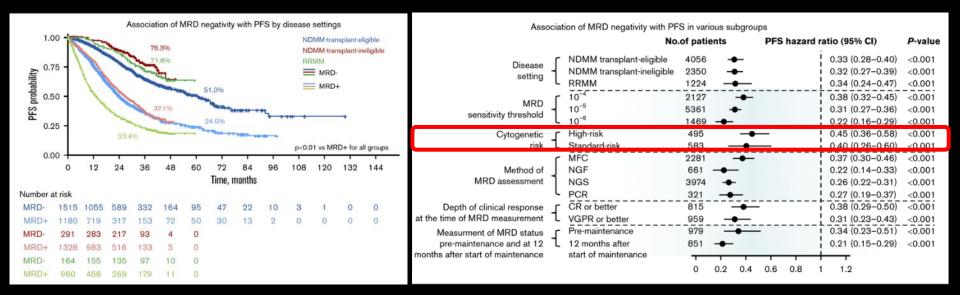
- FISH routine testing should include at least t(4;14) and del(17p), 1q, and 1p. It is also possible to include t(14:16)
- It is relevant to know the mutational status for *TP53*
- Concerning other mutations, huge heterogeneity is present
- CA may differ in first and later relapse because of clonal evolution, which may influence the effect of salvage treatment
- Clinical classifications may combine these lesions with ISS, serum LDH, or HR gene expression signatures

A high-risk, double-hit group of NDMM identified by genomic analysis

A high-risk subgroup was defined by recursive partitioning using either a) bi-allelic *TP53* inactivation or b) amplification (≥4 copies) of *CKS1B* (1q21) on the background of International Staging System III, composing 6.1% of the population (median PFS = 15.4 months; OS = 20.7 months)

Walker B, et al. Leukemia. 2019;33(1):159-170.


What are the therapeutic options for patients with high-risk features?


- 1. To use novel agent-based combinations
- 2. To try to achieve minimal residual disease negativity
- 3. To use combinations that are based on alkylators and conventional chemotherapy
- 4. 1 and 2 are correct

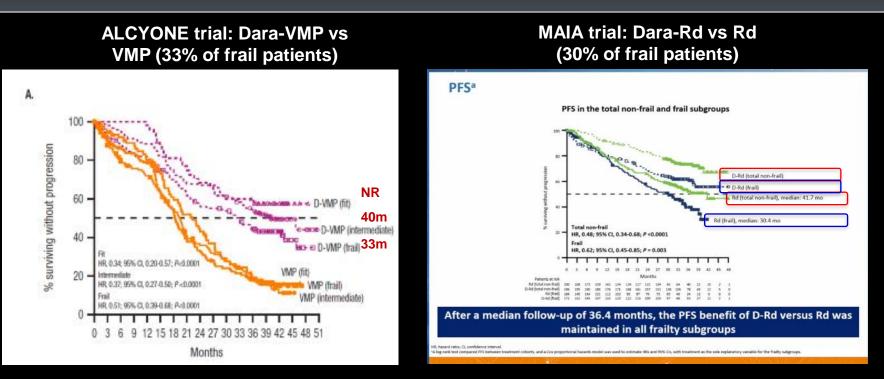
?

Treatment of MM

MRD as predictor across MM patient subgroups including HR

MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; PFS, progression-free survival; RRMM, relapsed refractory multiple myeloma. Munshi N, et al. *Blood Adv.* 2020;4(23):5988-5999.

What are factors that determine high risk in a patient with myeloma?

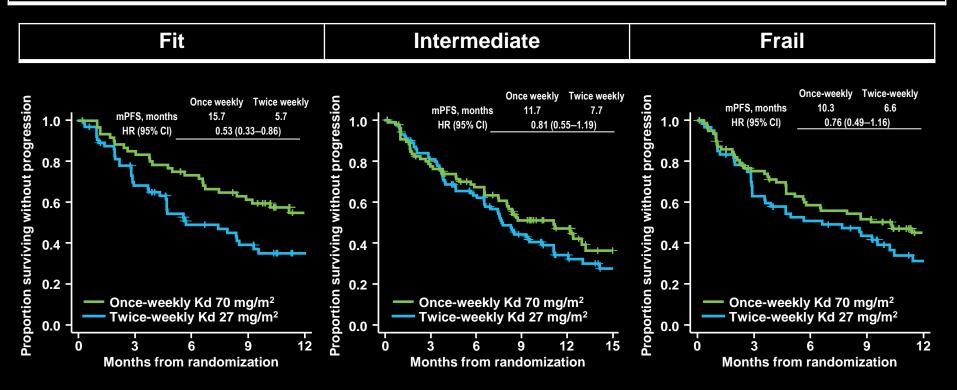

Patient-specific factors

- Age
- **Comorbidities**, eg, renal failure, spinal cord compression

Disease-specific factors

- ISS stage/R-ISS
- Cytogenetic abnormalities
- Extramedullary disease
- Plasma cell leukemia
- Lactate dehydrogenase level

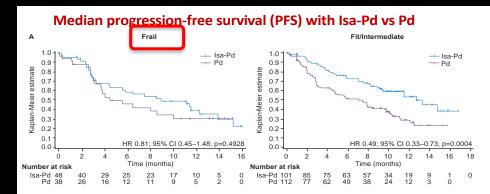
How do novel combinations improve the outcomes of frail NDMM patients?

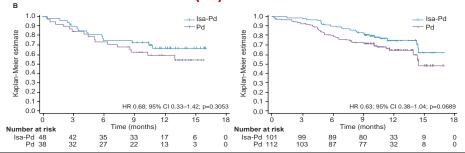


The addition of daratumumab improved the outcomes of frail patients. Frailty evaluated through the use of chronologic age, ECOG, and Charlson comorbidity index.

Mateos MV. Submitted; Zamagni E, et al. European Myeloma Network 2021 Virtual Meeting.

How do novel combinations improve the outcomes of frail RRMM patients?


In ARROW, median PFS was 11.2 mo for K once weekly vs 7.6 mo for K twice weekly, with HR of 0.69 (95% CI: 0.54-0.83)


Mateos MV. 17th International Myeloma Workshop. Boston, MA, 2019.

How do novel combinations improve the outcomes of frail, more heavily treated RRMM patients?

In ICARIA, median PFS was 11.5 mo for ISA-Pd vs 6.5 mo for Pd, with HR of 0.59

Median overall survival (OS) with Isa-Pd vs Pd

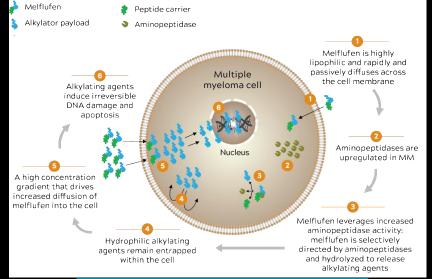
- In frail patients was 9.0 vs 4.5 months (hazard ratio [HR] 0.81; 95% confidence interval [CI] 0.45–1.48; log-rank p=0.4928).
- In fit/intermediate patients was 12.7 vs 7.4 months (HR 0.49; 95% CI 0.33–0.73; log-rank p=0.0004).

- 66.9% (95% CI 50.8–78.7) vs 58.8% (95%
 CI 41.0–72.9) in frail patients.
- 75.0% (95% CI 64.5–82.8) vs 64.5% (95% CI 53.9–73.3) in fit/intermediate patients.

Schjesvold F, et al. ASH 2020. Abstract/Poster 1411.

What are factors that determine high risk in a patient with myeloma?

Patient-specific factors

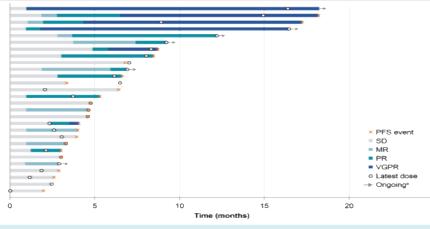

- Age
- Comorbidities, eg, renal failure, spinal cord compression

Disease-specific factors

- ISS stage/R-ISS
- Cytogenetic abnormalities
- Extramedullary disease
- Plasma cell leukemia
- Lactate dehydrogenase level

Melflufen plus Dex in RRMM with EMD: Subanalysis from the HORIZON clinical trial

Melphalan flufenamide (melflufen) is an investigational first-in-class peptide-drug conjugate (PDC) that **targets aminopeptidases and rapidly releases alkylating agents into tumor cells.**¹⁻⁵



Outcome ⁶	Overall Population (N=157)				
ORR (95% CI), %	29 (22-37)				
OS, median (95% CI), mo	11.6 (9.3-15.4)				
PFS, median (95% CI), mo	4.2 (3.4-4.9)				
DOR (≥PR), median (95% CI), mo	5.5 (3.9-7.6)				

ORR and CBR For Patients Within the EMD Group

	ORR, % (95% CI)	CBR, % (95% CI)
Bone-related plasmacytoma (n=28)	25 (10.7-44.9)	32 (15.9- 52.4)
Soft-tissue plasmacytoma (n=27)	22 (8.6-42.3)	30 (13.8- 50.2)

Swim-Lane Plot for Patients With EMD Who Achieved ≥SD

Median treatment duration was 12 weeks (range, 4-79) in the EMD group and 18 weeks (range, 4-99) in the non-EMD group.

Richardson P, et al. ASH 2020. Abstract 3214.

Efficacy of BCMA CAR T Ide-cel on the basis of baseline features

Deep and durable responses were observed in patients with more aggressive disease features. 128 RRMM patients were included in karMMa-2 trial and 39% presented with EMD.

	High-risk subgroups									All Ide-cel			
Efficacy	Extramedullary disease		Cytogenetic risk		Tumour burden		Bridging therapy		R-ISS disease stage		No. prior regimens/year		treated
outcomes	With (n = 50)	Without (n = 78)	High (n = 45)	Not high (n = 66)	High (n = 65)	Low (n = 57)	With (n = 112)	Without (n = 16)	Stage III (n = 21)	Stage I/II (n = 104)	>1 (n = 60)	≤1 (n = 68)	(N = 128)
ORR, %	70	76	69	80	71	77	71	88	48	80	65	81	73
(95% CI)	(55.4–82.1)	(64.6–84.7)	(55.4–82.4)	(70.7–89.9)	(58.2–81.4)	(64.2–87.3)	(62.1–79.6)	(61.7–98.4)	(25.7–70.2)	(70.8–87.0)	(51.6–76.9)	(69.5–89.4)	(65.8–81.1)
CRR, %	24	38	31	38	29	37	34	25	10	38	30	35	33
(95% CI)	(13.1–38.2)	(27.7–50.2)	(17.6–44.6)	(26.2–49.6)	(18.6–41.8)	(24.4–50.7)	(25.3–43.5)	(7.3–52.4)	(1.2–30.4)	(29.1–48.5)	(18.8–43.2)	(24.1–47.8)	(24.7–40.9)
Median D0R,ª	9.2	11.1	10.7	10.9	10.4	11.0	10.9	9.1	6.9	11.0	10.5	11.0	10.7
months (95% CI)	(5.4–11.3)	(9.9–16.7)	(6.5–NE)	(8.0–13.5)	(6.1–11.3)	(9.2–16.7)	(9.0–11.4)	(4.0–13.5)	(1.9–10.3)	(10.0–11.4)	(9.0–11.3)	(6.5–11.4)	(9.0–11.3)
Median PFS,	7.9	10.4	8.2	10.4	7.5	10.4	8.8	8.5	4.9	11.3	8.9	8.6	8.8
months (95% CI)	(5.1–10.9)	(4.9–12.2)	(4.8–11.9)	(5.4–12.2)	(4.9–11.3)	(5.6–12.3)	(5.5–11.6)	(3.4–14.4)	(1.8–8.2)	(6.1–12.2)	(3.1–11.1)	(5.8–12.2)	(5.6–11.6)

Ide-cel is not approved by any regulatory agency.

^aDuration among responders.

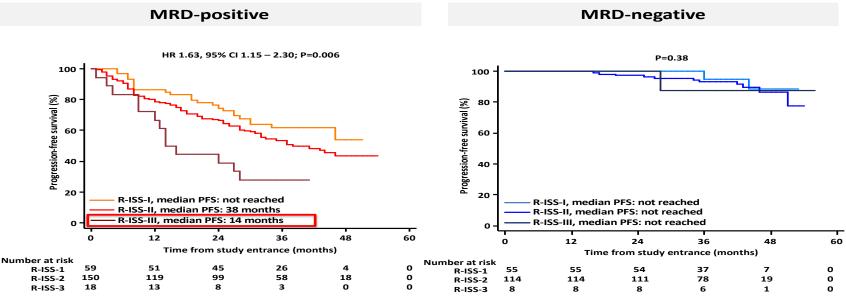
Raje NS, et al. Presented at ASH 2020. Abstract 3234.

What are factors that determine high risk in a patient with myeloma?

Patient-specific factors

- Age
- Comorbidities, eg, renal failure, spinal cord compression

Disease-specific factors

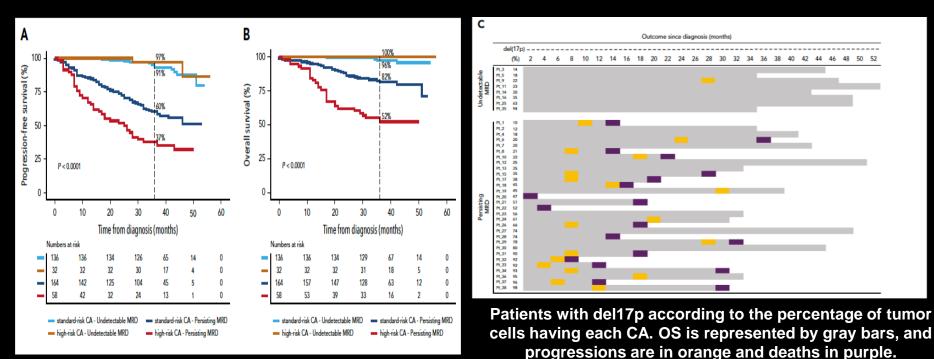

- ISS stage/R-ISS
- Cytogenetic abnormalities
- Extramedullary disease
- Plasma cell leukemia
- Lactate dehydrogenase level

Response to treatment

MRD negativity is able to overcome the poor prognosis defined by the R-ISS system

$RVD \times 6c \rightarrow ASCT \rightarrow RVD \times 2c \rightarrow Rd +/- ixazomib$

Risk is dynamic: patients with adverse prognosis may shift into a favorable one upon achieving deep responses to treatment



The best way to overcome high-risk cytogenetics is through the achievement of MRD-negativity

Paiva B, et al. J Clin Oncol. 2020;38(8):784-792.

MRD negativity is able to overcome the poor prognosis defined by the presence of HR CA

$RVD \times 6c \rightarrow ASCT \rightarrow RVD \times 2c \rightarrow Rd +/- ixazomib$

Goicoechea I, et al. Blood. 2021;137:49-60.

Management of HR MM in the newly diagnosed transplant candidate patient

Three-drug-based combinations

VCD

VTD

MEL200 as standard conditioning regimen

Similar to induction to upgrade the response depending on the number

VTD-Dara

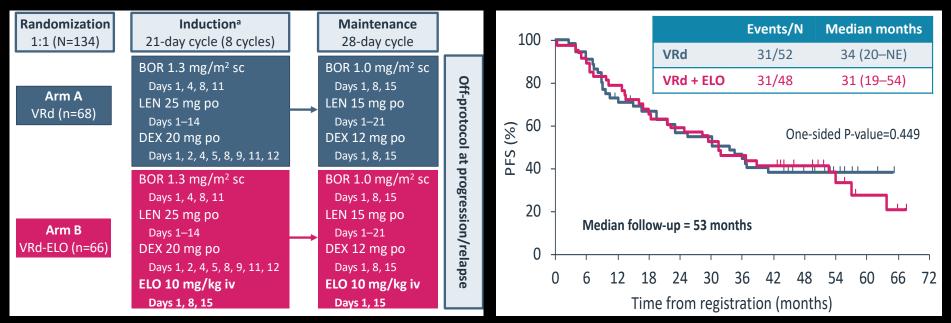
VRD

0

Len single agent vT Bortezomib in high risk

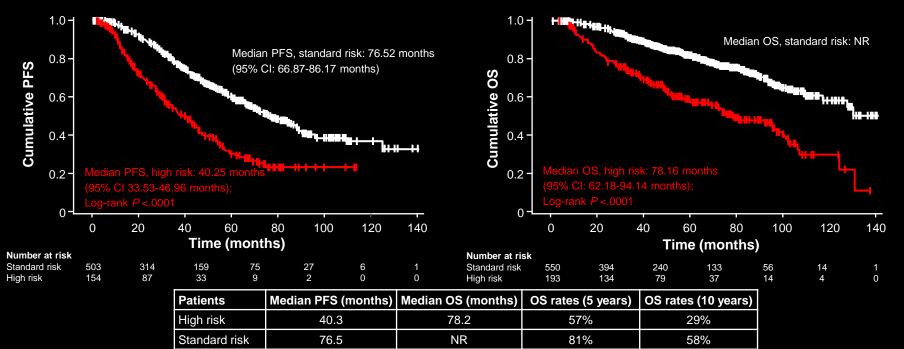
of induction cycles

ASCT, autologous stem cell transplant; PAD, bortezomib, doxorubicin, dexamethasone; VCD, bortezomib, cyclophosphamide, dexamethasone; VRD, bortezomib, lenalidomide, dexamethasone; VTD-dara, bortezomib, thalidomide, dexamethasone, daratumumab. 1. Dimopoulos MA, et al. *HemaSphere*. 2021;5(2):e528; 2. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]). Multiple myeloma. Version 5.2021. 2021.


According to the ESMO¹ and NCCN² guidelines

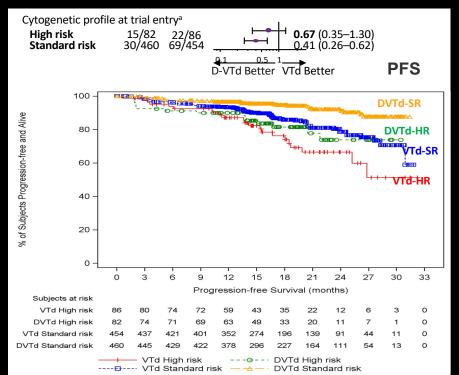
SWOG-1211: Phase 2 randomized trial of bortezomib, lenalidomide, dexamethasone with/without elotuzumab for newly diagnosed, high-risk multiple myeloma

Poor-risk score by gene expression profiling


≥1 cytogenetic abnormalities: t(14;20)(q32;q12) t(14;16)(q32.3;q23) del(17p),1q21 amplification

PPCL or elevated serum LDH 2 × ULN

Real-world outcomes of RVd induction in transplant by standard- and high-risk status



VRd is not approved in EU for transplant-eligible NDMM patients (approved for transplant-ineligible patients). Risk defined by IMWG criteria. IMWG, International Myeloma Working Group. Joseph N, et al. J Clin Oncol. 2020;38(17):1928-1937.

Dara-VTD vs VTD as induction and consolidation in TE NDMM: Results from the phase 3 CASSIOPEIA trial (n = 1085) – HR subgroups

In the ITT population: sCR/MRD– rate/median PFS was 29% vs 20%/64% vs 44%/93% vs 85% at 18 mo

Probability of MRD– achievement with D-VTd vs VTd

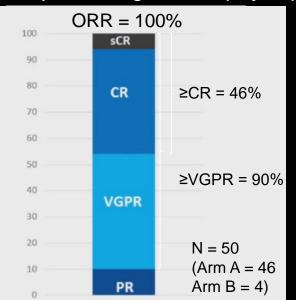
	VTd	D-VTd		Ratio (95% CI)		
Subgroup	minimal residual dis	ease negative,	n (%)			
Sex						
Male	131 (41)	192 (61)	¦ ⊢•-I	2.22 (1.62–3.05)		
Female	105 (47)	154 (68)	. ⊢ • ⊣	2.37 (1.62–3.48)		
Age			1			
<50 years	38 (42)	56 (68)		2.84 (1.53–5.28)		
≥50 years	198 (44)	290 (63)	⊢⊷⊣	2.19 (1.68–2.85)		
Site			:			
IFM	204 (45)	287 (64)	⊢ •+	2.16 (1.65–2.81)		
HOVON	32 (38)	59 (65)		3.05 (1.65–5.65)		
ISS disease stage	•					
I.	103 (45)	137 (67)	i ⊢ ∙−1	2.48 (1.68–3.67)		
	96 (41)	155 (61)		2.21 (1.54–3.18)		
ш	37 (46)	54 (64)		2.14 (1.15–4.00)		
Cytogenetic profi	le at trial entry ^b		i I			
High risk	38 (44)	49 (60)	j	1.88 (1.02–3.46)		
Standard risk	197 (43)	296 (64)	<u>;</u> ⊢•-I	2.35 (1.80–3.07)		
			+	···		
	1 5 10					
	VTd Better D-VTd Better					

Moreau P, et al. Lancet. 2019;394:29-38.

Phase 2 FORTE study: KRd-ASCT vs KRd12 vs KCd-ASCT in TE NDMM

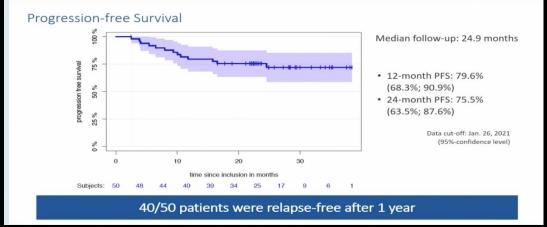
61% vs 56% vs 67% of pts presented HR CA, defined by the presence of t(4;14), t(14;16), gain 1q, amp 1q, del1p

Random 1, first randomization (induction/consolidation treatment); ASCT, autologous stem-cell trasplantation; K, carfitzomib; R, lenaildomide; C, cyclophosphamide; d, dexamethasone; KCd_ASCT, KCd induction-ASCT-KCd consolidation; KRd12, 12 cycles of KRd; HR, hazard ratio; CI, confidence interval; p, p-value; iQR, interquartile range.


KCd-ASCT and KRd12 seem to be non-superior to RVd

Gay F, et al. ASCO 2021.

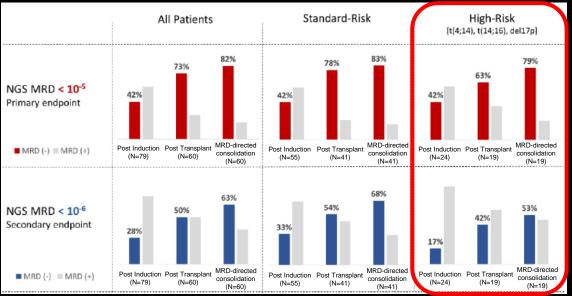
Phase 2 GMMG-CONCEPT study: Interim analysis of isatuximab + carfilzomib-lenalidomide-dexamethasone in high-risk NDMM


Isa-KRd induction, consolidation, and maintenance; TE patients undergo ASCT after 6 cycles induction

- TE (Arm A; n = 117) and TNE (Arm B; n = 36) patients
- Median (range) age: 58 (42–82) years

Best response during induction (6 cycles)

High risk: del(17p); t(4;14); t(14;16) or >3 copies 1q21 AND ISS stage II or III

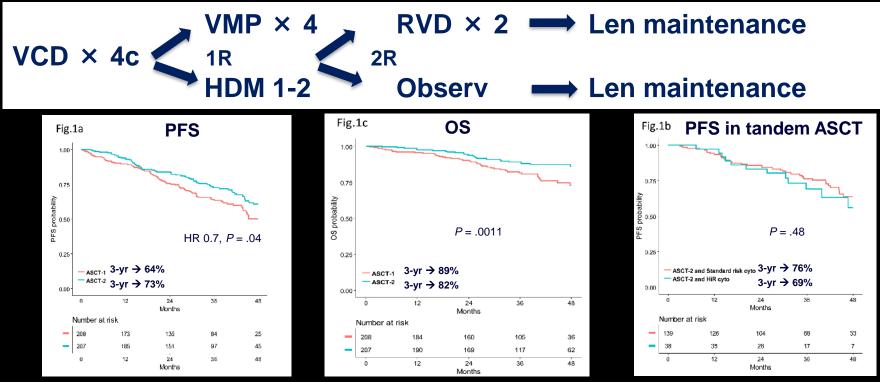

• MRD-, 20/33 (61%) evaluable TE patients during induction

CR, complete response; PR, partial response; sCR, stringent complete response; TEAE, treatment-emergent adverse event; TE, transplant eligible; TNE, transplant non-eligible; URI, upper respiratory tract infection; VGPR, very good partial response. Weisel K, et al. EHA 2021. Abstract S183.

Phase 2 MASTER study: Daratumumab + carfilzomib-lenalidomidedexamethasone induction and MRD response-adapted consolidation in NDMM

D-KRd induction (4 cycles), D-KRd consolidation (4 + 4 cycles), and R maintenance

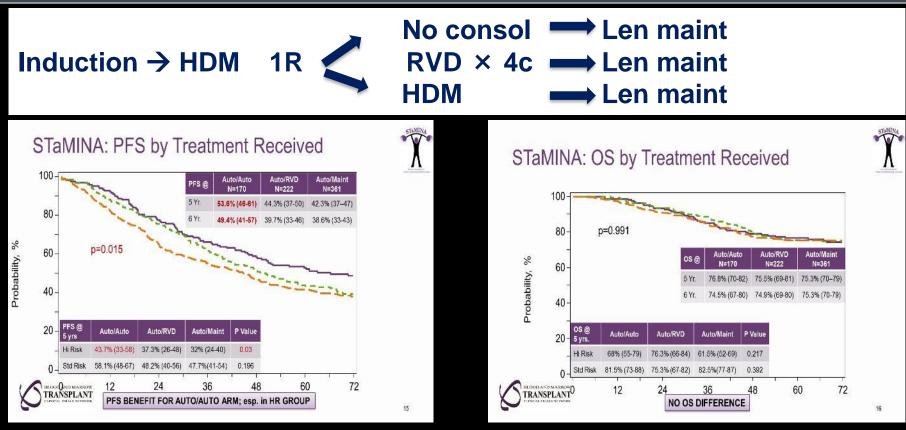
- Median age: 61 years
 High risk: 29%
- >VGPR after induction: 91%; >CR post-ASCT and MRD-guided consolidation: 92%


Optimal approach but . . . will it be a valid approach to stop therapy on the basis of MRD in HR subgroup of pts?

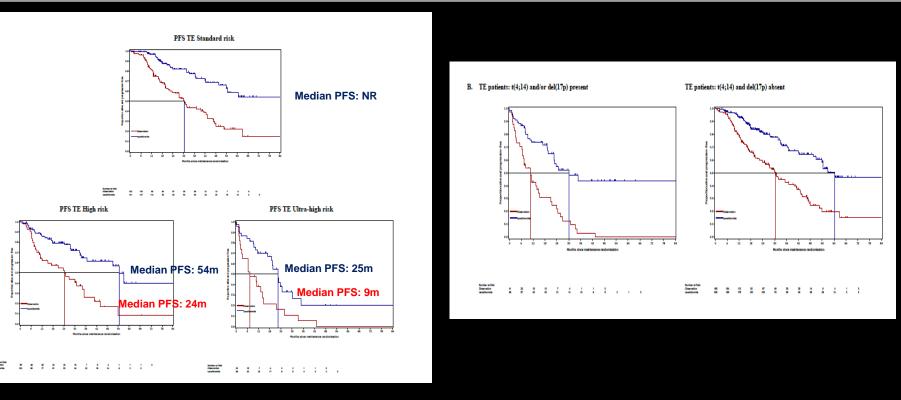
Safety: Most common TEAEs

Common AEs	Grade 3 or 4 (%)
Neutropenia	25
Lymphopenia	23
Infection	12
Anemia	11

AE, adverse event; MRD, minimal residual disease; NGS, next-generation sequencing. Costa L, et al. EHA 2020. Abstract EP928.


Tandem ASCT in high-risk NDMM patients

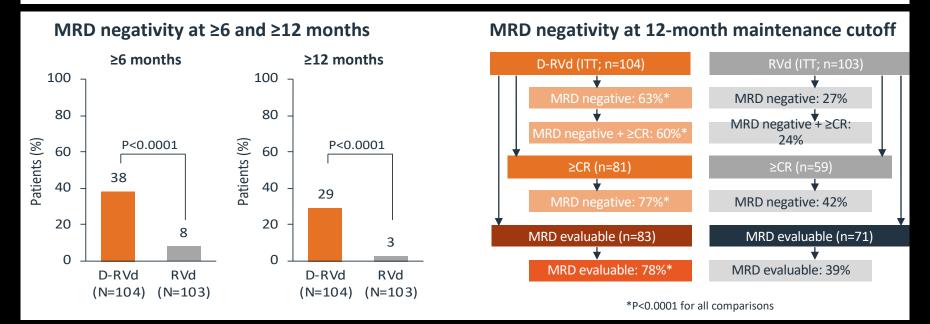
ASCT-2 was superior to ASCT-1 in terms of prolonged PFS and OS in the overall population and seems to be able to overcome the poor prognosis of patients with advanced R-ISS and HiR CA.


Cavo M, et al. ASH 2017. Oral presentation.

Tandem ASCT in high-risk NDMM patients

Hari P, et al. ASCO 2020.

Lenalidomide as maintenance in HR-NDMM transplant eligible: Myeloma XI trial

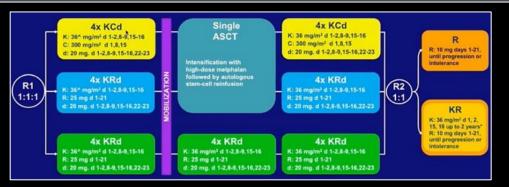


Lenalidomide improves the outcome of patients with HR or ultra HR, but does not overcome its poor prognosis.

Jackson G, et al. Lancet Oncol. 2019;20(1):57-73.

New options for maintenance in HR-NDMM transplant eligible

RVd +/– Dara \rightarrow ASCT \rightarrow RVd +/– Dara \rightarrow maintenance with R +/– Dara



MRD– and sustained over time higher with Dara-R as maintenance will improve the outcome in HR patients.

CR, complete response; D-RVd, daratumumab, lenalidomide, bortezomib, dexamethasone; ITT, intention to treat; MRD, minimal residual disease; RVD, lenalidomide, bortezomib, dexamethasone; sCR, stringent CR.

Kaufman JL, et al. ASH 2020. Abstract 549 (oral presentation).

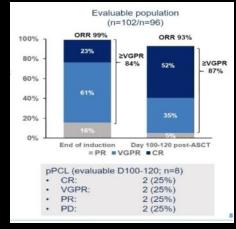
New options for maintenance in HR-NDMM transplant eligible

- KR maintenance improves PFS compared with R in all patients
- No significant toxicity signal
- Disadvantages: 4 days of infusion, HR still does worse than SR

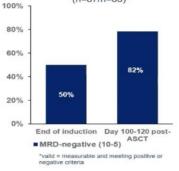
Random 2, second randomization (maintenance treatment); IQR, interguartile range; K, carfitzomib; R, lenalidomide; HR, hazand ratio; CI, confidence interval; p, p-value.

OPTIMUM trial

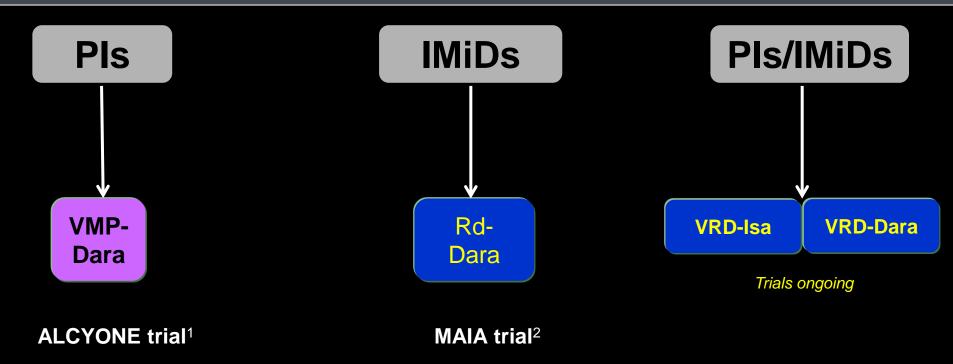
Bridging Max 2 cycles	Induction Max 6 cycles (incl bridging)		Consolidation 1 6 Cycles Start 100-120d post ASCT	Consolidation 2 12 Cycles	Maintenance Until progression
	Dara-CVRd Daratumumab iv 16 mg/kg Cycle 182: Days 1, 8, 15 Cycle 3+: Day 1 Cyclophosphamide po 500 mg Days 1, 8 Bortezomib sc 1.3 mg/m² Days 1, 4, 8, 11* Lenalidomide po 25 mg Days 1-14	V-HD-MEL +ASCT Melphalan iv 200 mg/m ² Day -1 Autologous Stem Cell Translantation Day 0 Bortezomib 1.3 mg/m ² Days -1, +5, +14,*	Dara-VRd Daratumumab sc 1800 mg Day 1 Bortezomib sc 1.3 mg/m ² Days 1, 8, 15, 22* Lenalidomide po 25 mg Days 1-21 Dexamethasone po 40 mg [†] Day 1, 8, 15, 22	Dara-VR Daratumumab sc 1800 mg Day 1 Bortezomib sc 1.3 mg/m² Days 1.8, 15* Lenalidomide po 25 mg Days 1-21	Dara-R Daratumumab sc 1800 mg Day 1 Lenalidomide po 25 mg Days 1-21
	Dexamethasone po 40 mg ¹ Days 1, 4, 8, 11 21d cycles	Bays -1, +5, +14, Weekly after haematopoletic recovery	28d cycles	28d cycles	28d cycles


Trial population

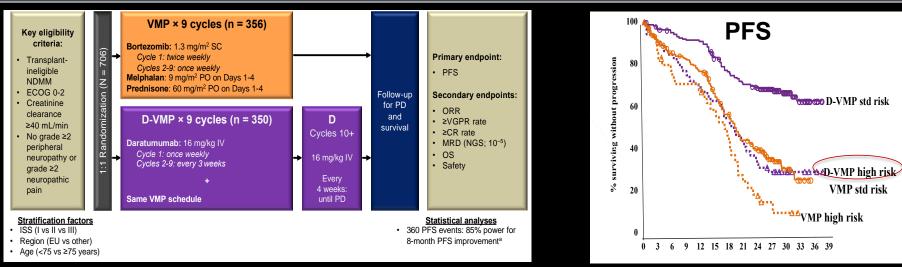
- 472 patients entered OPTIMUM Screen
- Recruitment September 2017 to July 2019
- · 39 UK NHS hospitals
- · 128 with Ultra High-Risk features
- · 10 primary plasma cell leukaemia
- · 107 consented and eligible for OPTIMUM Treat



Patient Characteristics	Safety population (n=107)	
Median age, yrs (IQR)	60 (35-78)	
Male, n (%)	64 (60%)	
ISS Stage 1, n (%)	29 (27%)	
Stage 2, n (%)	44 (40%)	
Stage 3, n (%)	34 (32%)	
missing, n (%)	1 (1%)	
ECOG Performance Status		
0, n (%)	51 (48%)	
1, n (%)	42 (39%)	
2, n (%)	10 (9%)	
missing, n (%)	4 (4%)	
Received bridging induction therapy, n (%)	86 (80%)	
Double hit genetics, n (%)	57 (53%)	
SKY92 risk signature present, n (%)	83 (77%)	
Both Double hit and SKY92, n (%)	33 (31%)	



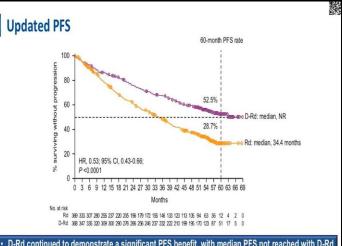
Kaiser M, et al. ASCO 2021.


Management of MM in the HR-ND non-transplanteligible patient

mAbs as part of the upfront setting for every NDMM non-transplant eligible

1. Mateos MV, et al. N Engl J Med. 2018;378:518-528; 2. Facon T, et al. N Engl J Med. 2019;380:2104-2115.

Dara-VMP vs VMP in HR-NDMM non-transplant eligible


- Dara added to VMP does not overcome the poor prognosis of the presence of high-risk CA
- This effect is especially observed after the first 12 mo when patients received only Dara
- In order to improve the outcome, something else should be added to Dara maintenance
- Patients with HR and achieving MRd negativity could potentially benefit

ORR: 91% vs 74% CR: 45% vs 25% PFS: 36.4 vs 19.3 mo OS at 42 mo: 75 vs 67% 15% with HR CA

Mateos MV, et al. N Engl J Med. 2018;378:518-528.

Dara-Rd vs Rd in HR-NDMM non-transplant eligible

D-Rd continued to demonstrate a significant PFS benefit, with median PFS not reached with D-Rd
These data provide a new PFS benchmark in patients with NDMM who are transplant ineligible

	Rd	D-Rd		
	n/N Median	n/N Median		HR (95% CI)
Baseline hepatic fund	tion			
Normal	186/34033.8	125/335 NE	M	0.50 (0.40-0.63)
Impaired	13/29 35.1	16/31 29.2	- I	► 1.06 (0.51-2.21)
ISS staging				
I	39/103 51.2	28/98 NE	⊢ ●−−İ	0.60 (0.37-0.97)
11	92/156 29.7	61/163 NE	⊢ ⊣	0.46 (0.34-0.64)
111	68/110 24.2	52/107 42.4		0.59 (0.41-0.85)
Type of MM				
lgG	117/23138.7	91/225 NE	I-0-1	0.67 (0.51-0.88)
Non-IaG	40/76 22 5	26/74 NE		0.36 (0.22-0.58)
Cytogenetic risk at st	udy entry			
High risk	28/44 29.6	23/48 45.3	H	0.57 (0.33-1.00)
Standard risk	153/27934.4	99/271 NE	M	0.48 (0.38-0.62)
ECOG PS score				
0	68/123 39.6	42/127 NE	H-H	0.45 (0.31-0.67)
1	92/187 35.1	72/178 NE	I-●-I	0.61 (0.45-0.84)
≥2	39/59 23.5	27/63 NE		0.52 (0.31-0.85)
		0.0	0.5 1.0	0 1.5 2.0
		Favo	rs D-Rd	Favors Rd

Kumar S, et al. ASH 2020.

Phase 2 study: Carfilzomib-lenalidomide-Dex vs carfilzomibthalidomide-Dex induction and carfilzomib maintenance (n = 60 pts)

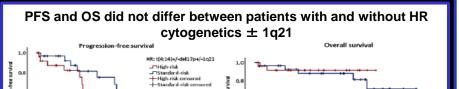
Median age: 75 years

16.6 months vs NR:

10

20

Months


30

P = .099

Median follow-up: 15.7 months

Response rate by risk group							
Response	SR patients without HR (n=49)	HR patients (n=11)	SR patients without HR ± 1q21 (n=29)	HR ± 1q21 (n=20)			
ORR	93.9%	100%	89.6%	100%			
PR	16.3%	27.3%	17.2%	20.0%			
VGPR	38.8%	36.4%	48.3%	25.0%			
CR	38.8%	36.4%	24.1%	55.0%			

• MRD negativity: 18/40 (45%) patients

OS not reached:

10

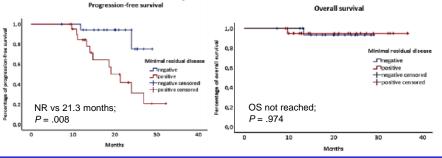
20

Months

HR: t[4:14]+/-del17p+/-1q21

Standard-risk censored

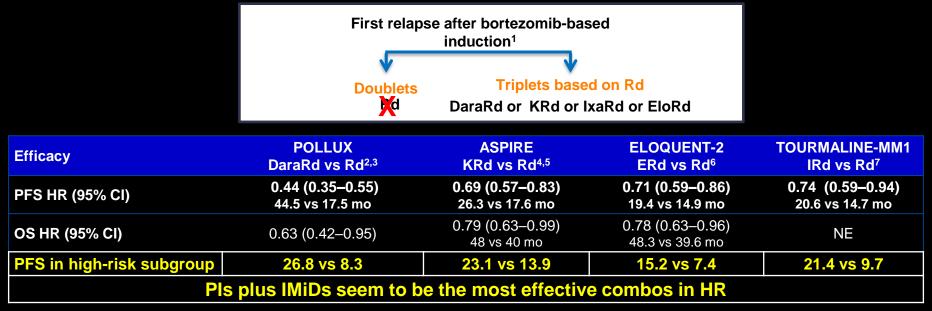
High-risk censored


■High-risk ■Standard-risk

30

P = .633

PFS was shorter in MRD+ patients; no difference in OS was seen



CR, complete response; HR, high risk; MRD, minimal residual disease; NR, not reached; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PR, partial response; SR, standard risk; VGPR, very good partial response. Ludwig H, et al. EHA 2020. Abstract EP961.

Management of first relapses in HR-MM patients

First line

- Bortezomib-based combinations
- Len naive or exposed, but sensitive

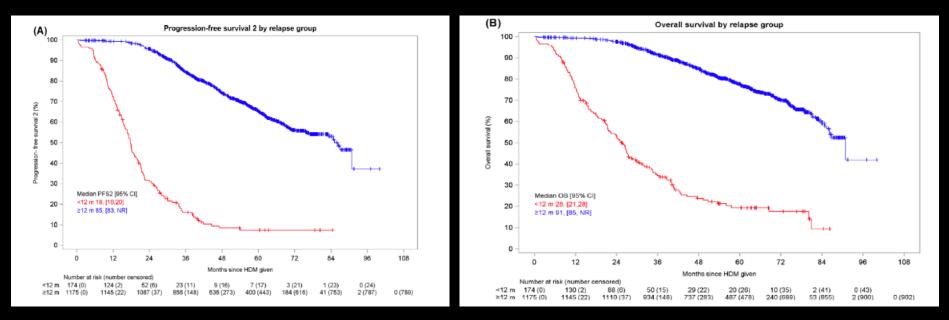
1. Moreau P, et al. Ann Oncol. 2017;28(suppl 4):iv52-iv61; 2. Bahlis NJ, et al. ASH 2018. Abstract 1996, poster presentation; 3. Usmani SZ, et al. ASH 2016. Abstract 1151, oral presentation; 4. Stewart AK, et al. N Engl J Med. 2015;372:142-152; 5. Siegel DS, et al. J Clin Oncol. 2018;36(8):728-734; 6. Dimopoulos MA, et al. Cancer. 2018;124(20):4032-4043; 7. Moreau P, et al. N Engl J Med. 2016;374:1621-1634.

Management of first relapses in HR-MM patients

First line

- Bortezomib-based combinations
- Len exposed and refractory

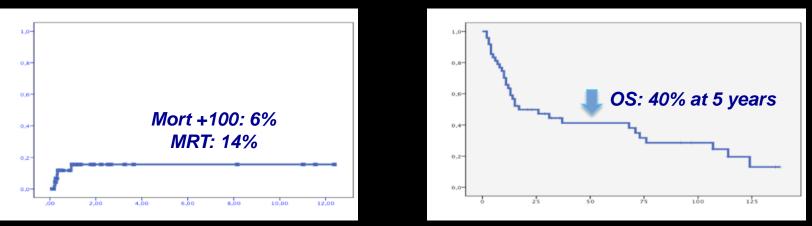
	First relapse after IMiD-based induction					
	Doublets Kd/	DaraVD or	Triplets based on bortezomib DaraVD or PayoVD or EXVD or VCD			
Efficacy	ENDEAVOR ¹ (n = 929) Kd vs Vd	CASTOR ² (n = 499) DaraVd vs Vd	CANDOR ³ (n = 466) DaraKd vs Kd	OPTIMISMM ⁴ (n = 559) PVd vs Vd	BOSTON ⁵ (n = 402) SVd vs Vd	
PFS HR (95% CI)	0.53 (0.44 – 0.63) 18.7 vs 9.4 m	0.31 (0.25 – 0.40) 16.7 vs 7.1 m	0.59 (0.45–0.78) 28.6 vs 15.2	0.61 (0.49–0.77) 11.2 vs 7.1	0.67 13.9 vs 9.4	
OS HR (95% CI)	0.79 (0.65–0.96) 47.6 vs 40 m					
PFS in high-risk subgroup	8.8 vs 6.0	12.6 vs 6.2	15.6 vs 5.6	HR 0.56 in favor of PVd	HR 0.67 in favor of SVd (0.38 in del[17])	


1. Dimopoulos M, et al. *Lancet Oncol.* 2016;17:27-38; 2. Palumbo A, et al. *N Engl J Med.* 2016;375:754-766; 3. Dimopoulos M, et al. *Lancet.* 2020;396:186-197; 4. Richardson PG, et al. *Lancet Oncol.* 2019;20(6):781-794; 5. Grosicki S, et al. *Lancet.* 2020;396:1563-1573.

48-yr-old NDMM IgG-κ with anemia and lytic lesions with no HR CA. RVd → ASCT (CR, MRD–) → R maintenance; relapse occurred 1 year later. How would you define this patient?

- 1. Standard-risk patient, candidate for anti-CD38 mAbs
- 2. Functional high-risk patient, candidate to receive a different approach
- 3. I will consult an expert on how to proceed
- 4. I will do a PET-CT to see if the patient presents EMD

Early relapse after HDM-ASCT as predictor of inferior survival and associated with high tumor disease burden and disease of high risk from the cytogenetic point of view


Early relapsers presented with

Lower levels of Hb, platelets, higher PBMC infiltration, higher B2M, ISS-3, and HR or ultra-HR CA

Bygrave C, et al. Br J Haematol. 2021;193(3):551-555.

Allogeneic transplant in MM: Local experience

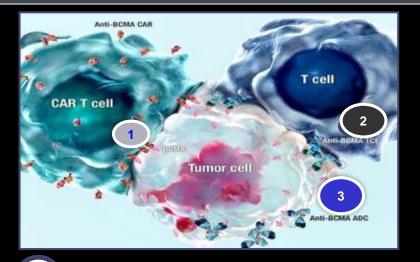
- Retrospective study, n = 48 pts
- RIC-allo in 98%, 73% in ≥RP

SLP of approximately 1 year Chronic GVHD is an independent prognostic factor for PFS/OS

Allo-transplant can be a therapeutic option in selected patients, but it is key to do immunosuppression manipulation (withdrawal, DLI, . . .) in order to develop graft-versus-myeloma.

López Godino O, et al. EBMT 2014. Abstract PH-P534.

Functional high-risk MM patients


Early relapse (<1–2 years post-first line)

Regardless of age and the presence of high-risk features

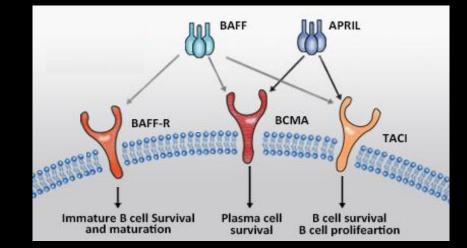
Modern approach "Overcome drug resistance" Cell therapy through CAR T cells or bispecific mAbs

Mateos MV. Personal communication.

BCMA as a target in MM

CAR T-cell therapy (CAR T)

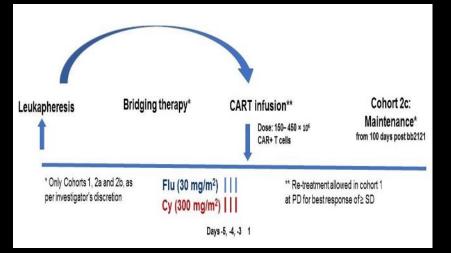
T-cell engager antibody (TCE)


Antibody-drug conjugate (ADC)

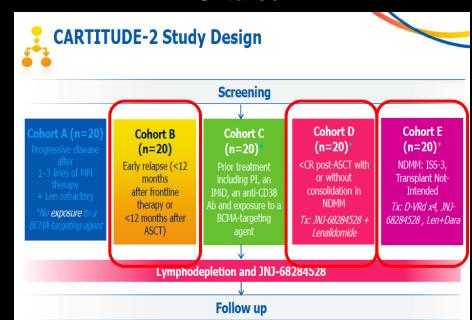
Belantamab mafodotin monotherapy is an ADC approved for patients with RRMM with \geq 4 prior therapies, whose disease is refractory to \geq 1 PI, IMiD, and an anti-CD38 mAb, and who have demonstrated disease progression on the last therapy¹

CAR T, chimeric antigen receptor T-cell therapy; IMiD, immunomodulatory agent; mAb, monoclonal antibody; PI proteasome inhibitor. 1. https://www.ema.europa.eu/en/documents/product-information/blenrep-epar-product-information_en.pdf;

2. Yu B, et al. J Hematol Oncol. 2020;doi:10.1186/s13045-020-00962-7.


BCMA is extensively studied and is an approved target^{1,2}

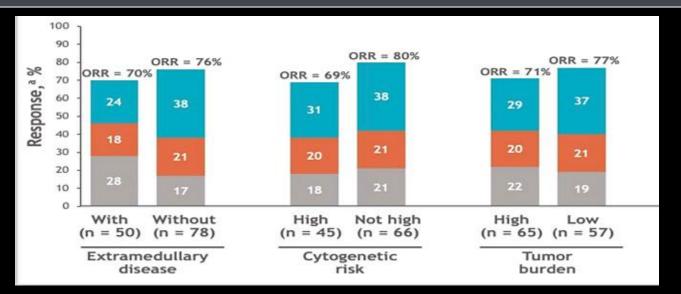
BCMA-CAR T cells under investigation in HR-MM pts


Ide-cel: bb2121-MM-002

Cilta-cel

MM R-ISS 3 after 1PL and

- PD <18 mo from start 1L (TE)
- PD <18 mo from start 1L (TIE)
- <VGPR 70–110 days from ASCT


Raje N et al. N Engl J Med. 2019;380:1726-1737; ClinicalTrials.gov Identifier: NCT04133636.

Disease morbidity and risk-assessment influence the choice of cell therapy

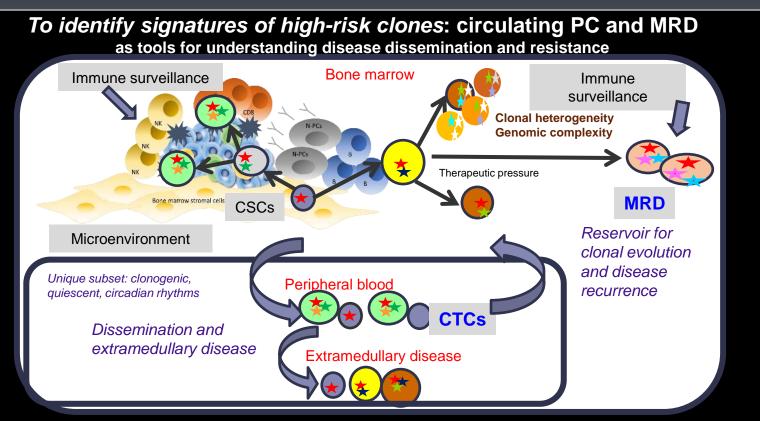
	lde-cel ¹ (all treated) (N = 128)	Cilta-cel ² (N = 97)		
Follow-up, median	13.3 mo (0.2–21)	12.4 mo (1.5–24.9)		
Prior lines of therapy, median (range)	6 (3–16)	6 (3–18)		
Triple refractory	84%	87%		
Extramedullary disease (EMD)	39%	13%		
High-risk cytogenetics	35%	24%		
High tumor burden	51%	22%		
EMD and/or high-risk cytogenetics and/or high tumor burden should not influence the choice of cell therapy				

^aHigh tumor burden cut-offs ≥50% for ide-cel vs ≥60% for cilta-cel treated-patients. 1. Munshi NC, et al. *J Clin Oncol*. 2020;28(15): abstract 8503 (oral presentation); 2. Madduri D, et al. ASH 2020. Oral presentation.

Ide-cel, CAR T bb2121, KarMMa pivotal phase 2 trial: Efficacy across different patient subgroups

- Median PFS was ≥7.5 months in patients who had a high tumor burden, bridging therapy, and ≥1 prior regimen per year
- Median DOR was ≥9.2 months in all high-risk groups examined, except patients with R-ISS stage III

CAR T, chimeric antigen receptor T-cell therapy; CR, complete response; DOR, median duration of response; ORR, overall response rate; PFS, median progression-free survival.


Raje N, et al. ASH 2020. Abstract 3234 (poster presentation).

Disease morbidity and risk-assessment influence the choice of cell therapy

	Teclistamab ¹ (N = 149)	AMG 701 ² (N = 82)	PF-3135 ³ (N = 18)	REGN5458 ⁴ (N = 49)	TNB-383B ⁵ (N = 58)	Talquetamab ⁶ (N = 157)	Cevostamab ⁷ (N = 53)
Prior lines of therapy, median (range)	6 (2-14)	6 (2-25)	6.6 (1.7-16.8)	5 (2-17)	6 (3-15)	6 (2-20)	6 (2-15)
Triple refractory	81%	62%	30%	100%	64%	82%	72%
Extramedullary disease (EMD)	12%	25%	UK	UK	UK	20%	17%
High-risk cytogenetics	32%	UK	27%	UK	UK	13%	88%
High tumor burden	25%	UK	UK	UK	UK	22%	UK
Short follow-up for all trials							
ORR across the studies range from 62%-83% and no subgroup analyses have been conducted							

ORR, overall response rate; UK, unknown. 1. Garfall AL, et al. ASH 2020. Abstract 180; 2. Harrison SJ, et al. ASH 2020. Abstract 181; 3. Lesokhin AM, et al. ASH 2020. Abstract 3206; 4. Madduri D, et al. ASH 2020. Abstract 291; 5. Rodriquez C, et al. ASH 2020. Abstract 293; 6. Chari A, et al. ASH 2020 Virtual Meeting. Abstract 290; 7. Cohen AD, et al. ASH 2020 Virtual Meeting. Abstract 292.

How to improve scientific knowledge?

Next-generation sequencing, transcriptome . . . to well characterize the high-risk clones

Conclusions

- We need to continue improving
- Conventional and novel drugs improve but do not overcome the poor prognosis of high-risk features
- Areas for improvement
 - Better identification such as functional high risk and generation of scientific knowledge around the high-risk subgroups
 - New approaches such as cell therapy that can be promising for these patients
 - Trials focused on high-risk MM patients
- Strong correlation between prognosis in HR and MRD-negativity achievement

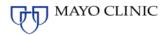
Management of Early Relapse of Multiple Myeloma

Rafael Fonseca, MD

Rafael Fonseca, MD Interim Executive Director, Mayo Clinic Cancer Center

MM Early Relapse – 2021

Scottsdale, Arizona

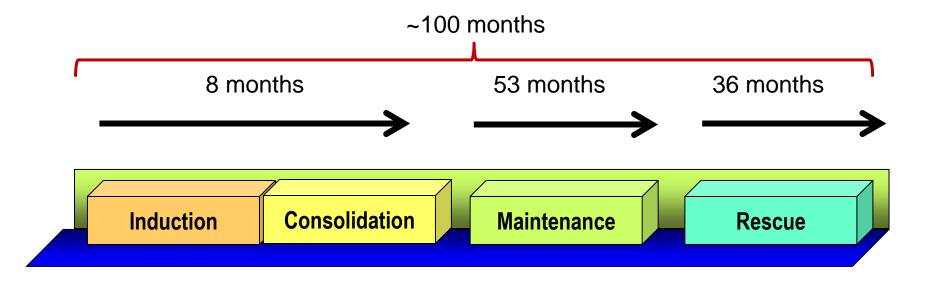

Rochester, Minnesota

Jacksonville, Florida

Mayo Clinic College of Medicine Mayo Clinic Comprehensive Cancer Center

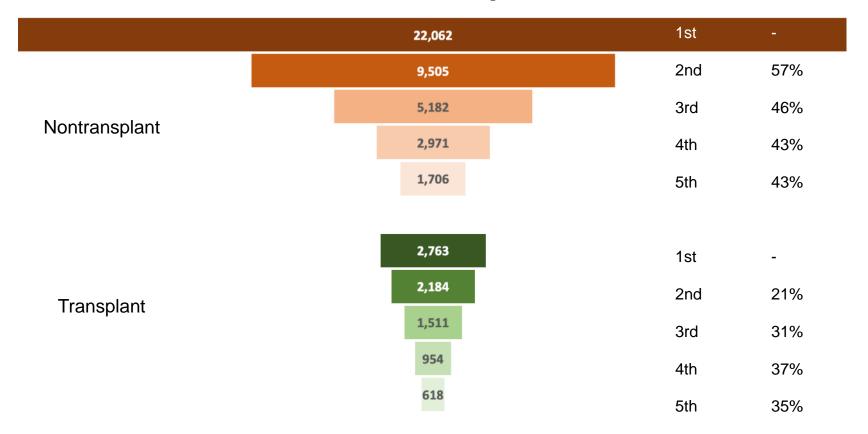
Disclosures

- Consulting: Amgen, BMS, Celgene, Takeda, Bayer, Janssen, AbbVie, Pharmacyclics, Merck, Sanofi, Kite
- **SAB:** Adaptive Biotechnologies, Caris Life Sciences (stock options)
- Patent for FISH in MM: ~\$2000/year
- Registered independent
- Believe in stem cell transplant


PRESENTATION QUESTION

Early RR MM Question

- Which of the following is not true in the treatment of RR MM?
 - a) In a direct comparison in RR MM, carfilzomib is superior to bortezomib
 - b) The addition of daratumumab to bortezomib and dexamethasone does not improve outcomes
 - **C)** Adding oral proteasome inhibitors can augment the depth of response to lenalidomide and dexamethasone
 - d) Cyclophosphamide can be combined effectively with proteasome inhibitors in RR MM
 - e) Both lenalidomide and pomalidomide can be combined with daratumumab


Multiple Myeloma Treatment Lines 2021

MAYO CLINIC

Fonseca R, unpublished.

Attrition With Subsequent Treatment

@rfonsi1, fonseca.rafael@mayo.edu

MAYO CLINIC

Fonseca R, et al. BMC Cancer. 2020;20:1087.

Key Numbers to Remember

•VD: 9

•RD: 17

@rfonsi1, fonseca.rafael@mayo.edu

Fonseca R, unpublished.

ENDEAVOR Study Design

Randomization 1:1

N=929

Stratification:

- Prior proteasome inhibitor therapy
- Prior lines of treatment
- ISS stage
- Route of V administration

Kd

Carfilzomib 56 mg/m² IV Days 1, 2, 8, 9, 15, 16 (20 mg/m² days 1, 2, cycle 1 only) Infusion duration: 30 minutes for all doses

Dexamethasone 20 mg Days 1, 2, 8, 9, 15, 16, 22, 23 28-day cycles until PD or unacceptable toxicity

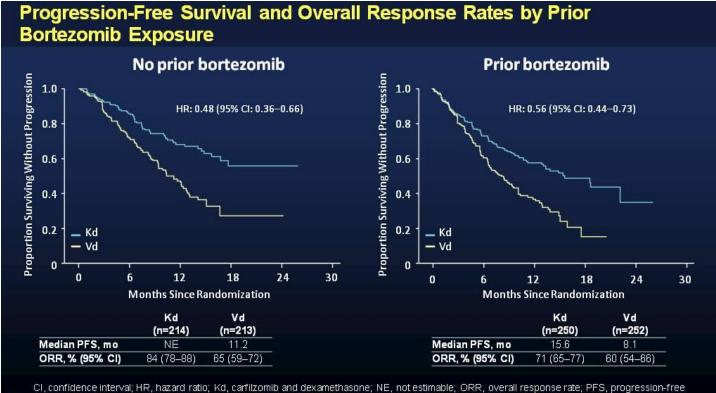
Vd

Bortezomib 1.3 mg/m² (IV bolus or subcutaneous injection)

Days 1, 4, 8, 11

Dexamethasone 20 mg

Days 1, 2, 4, 5, 8, 9, 11, 12


21-day cycles until PD or unacceptable toxicity

ISS, International Staging System; IV, intravenous; Kd, carfilzomib and dexamethasone; PD, progressive disease; Vd, bortezomib and dexamethasone; V, bortezomib.

MAYO CLINIC

Dimopoulos MA, et al. Lancet Oncol. 2016;17:27-38.

ENDEAVOR: Kd vs Vd

20 survival; Vd, bortezomib and dexamethasone.

MAYO CLINIC

Dimopoulos MA, et al. Lancet Oncol. 2016;17:27-38.

GEM-KyCydex: Objectives

Multicenter, open-label, randomized phase II trial

KyCydex

Carfilzomib 70 mg/m² IV

Days 1, 8 and 15 (20 mg/m² day 1 cycle 1 only) Infusion duration: 30 minutes for all doses

 Dexamethasone 40 mg weekly: 20 mg the day of Ky and 20 mg the day after.

Cyclophosphamide 300 mg/m² IV

Days 1, 8 and 15

28-day cycles until PD or unacceptable toxicity

Kydex

Carfilzomib 70 mg/m² IV

Days 1, 8 and 15 (20 mg/m² day 1 cycle 1 only) Infusion duration: 30 minutes for all doses

• Dexamethasone 40 mg weekly: 20 mg the day of Ky and 20 mg the day after.

28-day cycles until PD or unacceptable toxicity

Primary endpoint

Progression-free survival

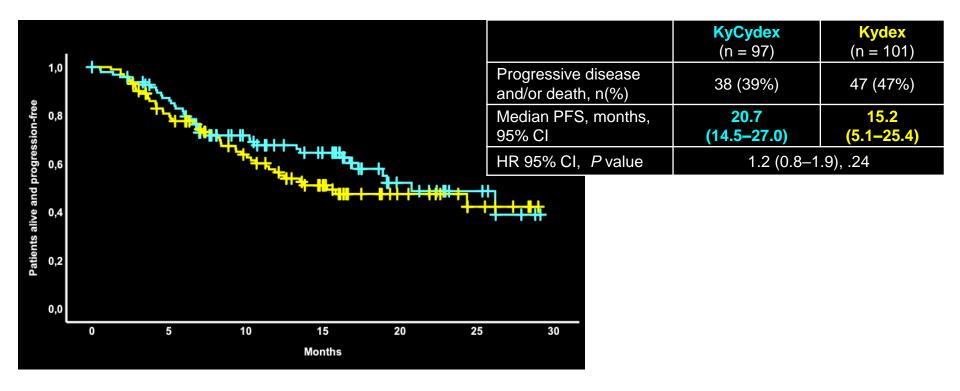
Secondary endpoints

- ORR and the different response categories
- TTP
- OS
- Safety profile

Randomization 1:1

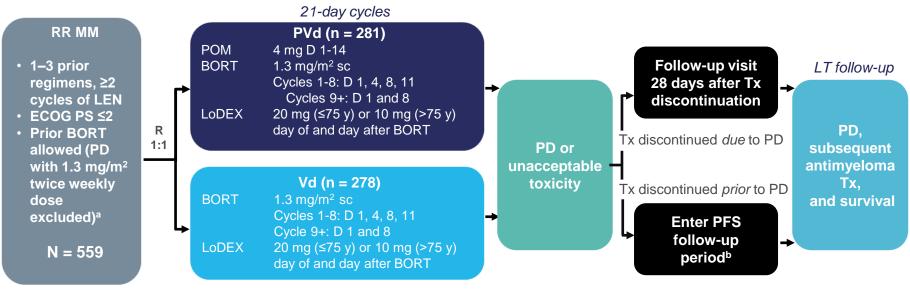
MAYO CLINIC

N=198


- RRMM patients after 1-3
 prior lines of therapy
- Prior therapy with PIs was allowed
- Patients refractory to PIs
 were not allowed
- CrCl >30 mlx minute
- LVEF > 50%

Dex 20 mg weekly for pts older than 75.

GEM-KyCydex: PFS


Median follow-up: 15.6 (1.3-29)

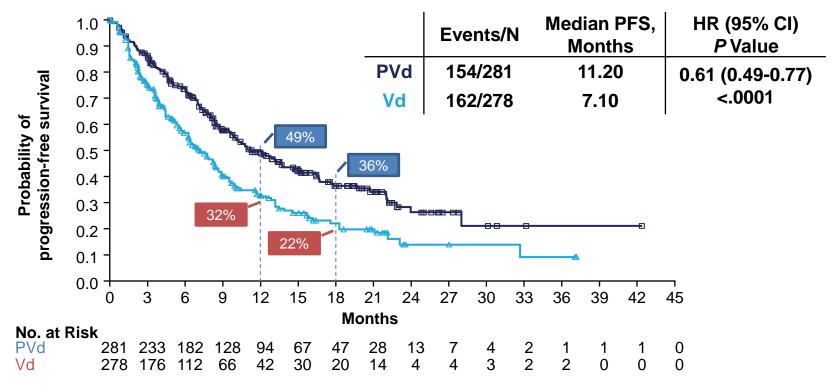
@rfonsi1, fonseca.rafael@mayo.edu

Mateos MV, et al. *Blood.* 2020;136(suppl 1):8-9.

Phase III OPTIMISMM Study Design

Stratification

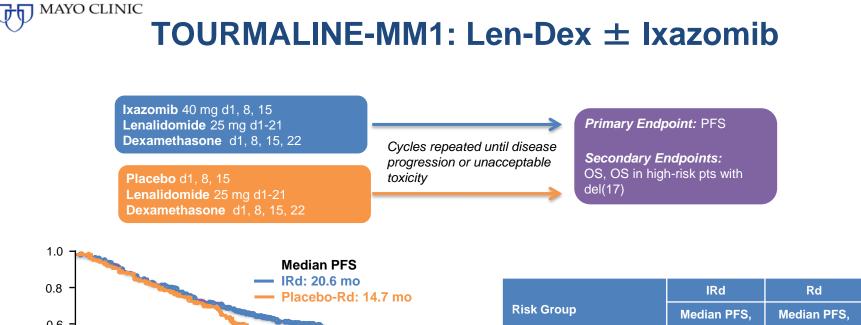
MAYO CLINIC

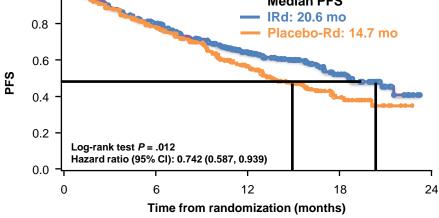

- Age (≤75 y vs >75 y)
- Prior regimens (1 vs >1)
- β2-microglobulin at screening (<3.5 mg/L vs ≥3.5 to ≤5.5 mg/L vs >5.5 mg/L)

- Study endpoints
 - Primary: PFS
 - Secondary: OS, ORR by IMWG criteria, DOR, safety
 - Key exploratory: TTR, PFS2, efficacy analysis in subgroups
- Data cutoff: October 26, 2017

Richardson PG, et al. ASCO 2018. Abstract 8001.

MAYO CLINIC

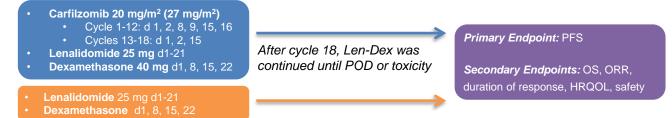

Progression-Free Survival (ITT)

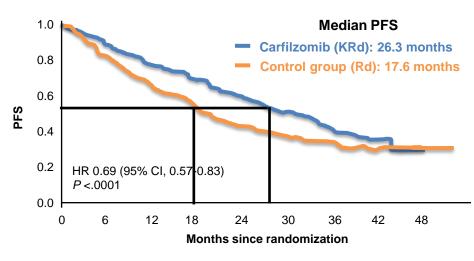


• PVd reduced the risk of progression and death by 39% compared with Vd

🥤 @rfonsi1, fonseca.rafael@mayo.edu

Richardson PG, et al. ASCO 2018. Abstract 8001.




	IRd			
Risk Group	Median PFS, mo	Median PFS, mo	HR	
Standard	20.6	15.6	0.640*	
High	21.4	9.7	0.543	
Patients with del(17p)	21.4	9.7	0.596	
Patients with t(4;14) alone	18.5	12.0	0.645	

Moreau P, et al. *N Engl J Med*. 2016;374:1621-1634.

@rfonsi1, fonseca.rafael@mayo.edu

ASPIRE: Len-Dex ± Carfilzomib

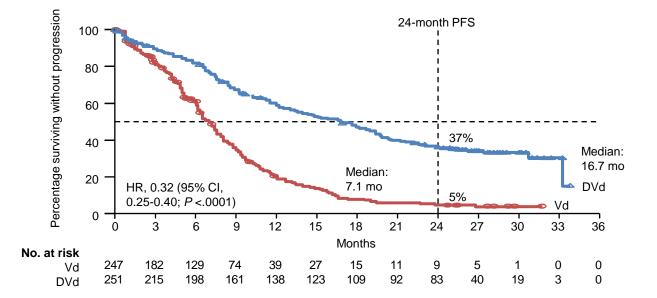
Risk	KR	(Rd (n = 396)		d (n = 396)		Р
Group by FISH	n	Median PFS, mo	n	Median PFS, mo	HR	P Value
High	48	23.1	52	13.9	0.70	.083
Standard	147	29.6	170	19.5	0.66	.004

@rfonsi1, fonseca.rafael@mayo.edu

MAYO CLINIC

Stewart AK, et al. N Engl J Med. 2015;372:142-152.

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

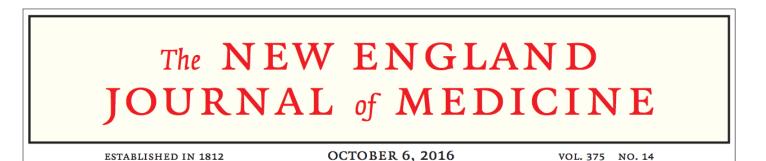
Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma

Antonio Palumbo, M.D., Asher Chanan-Khan, M.D., Katja Weisel, M.D.,
Ajay K. Nooka, M.D., Tamas Masszi, M.D., Meral Beksac, M.D.,
Ivan Spicka, M.D., Vania Hungria, M.D., Markus Munder, M.D.,
Maria V. Mateos, M.D., Tomer M. Mark, M.D., Ming Qi, M.D.,
Jordan Schecter, M.D., Himal Amin, B.S., Xiang Qin, M.S.,
William Deraedt, Ph.D., Tahamtan Ahmadi, M.D., Andrew Spencer, M.D.,
and Pieter Sonneveld, M.D., for the CASTOR Investigators*

Updated PFS in the ITT Population

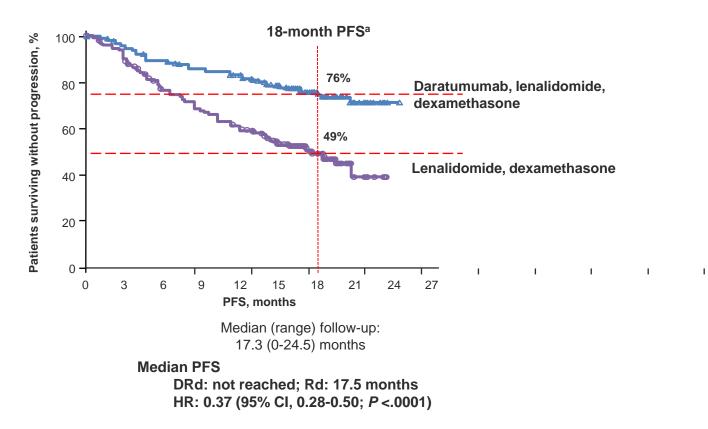
PFS was significantly prolonged with DVd compared with Vd (median: 16.7 vs 7.1 months; HR, 0.32; 95% Cl, 0.25-0.40; P <.0001; Figure)

PFS, progression-free survival; ITT, intent-to-treat; DVd, daratumumab-bortezomib-dexamethasone; Vd, bortezomib-dexamethasone; HR, hazard ratio.


@rfonsi1, fonseca.rafael@mayo.edu

MAYO CLINIC

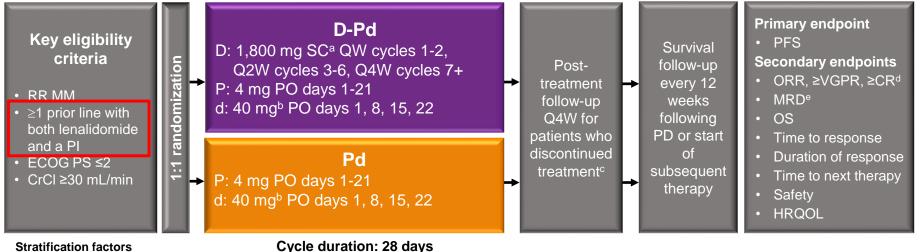
Mateos M, et al. *Blood*. 2018;132(suppl 1): abstract 3270.


Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma

M.A. Dimopoulos, A. Oriol, H. Nahi, J. San-Miguel, N.J. Bahlis, S.Z. Usmani, N. Rabin, R.Z. Orlowski,
 M. Komarnicki, K. Suzuki, T. Plesner, S.-S. Yoon, D. Ben Yehuda, P.G. Richardson, H. Goldschmidt,
 D. Reece, S. Lisby, N.Z. Khokhar, L. O'Rourke, C. Chiu, X. Qin, M. Guckert, T. Ahmadi,
 and P. Moreau, for the POLLUX Investigators*

🧖 @rfonsi1, fonseca.rafael@mayo.edu

Dimopoulos MA, et al. *N Engl J Med*. 2016;375:1319-1331.


HR, hazard ratio. ^aKaplan-Meier estimates. Clinical cutoff: June 30, 2016.

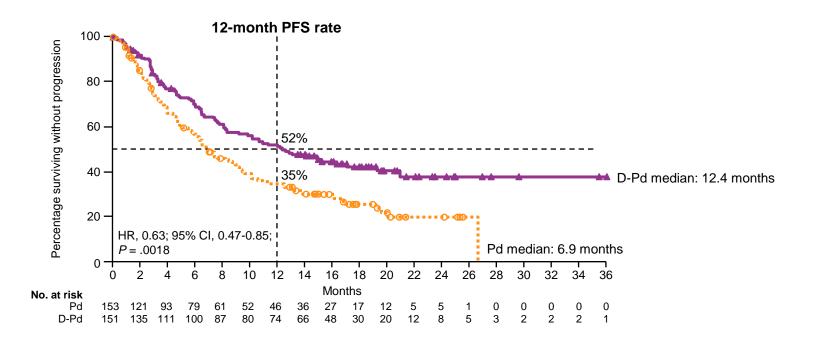
MAYO CLINIC

@rfonsi1, fonseca.rafael@mayo.edu

Dimopoulos MA, et al. *N Engl J Med*. 2016;375:1319-1331.

Treatment until PD or unacceptable toxicity

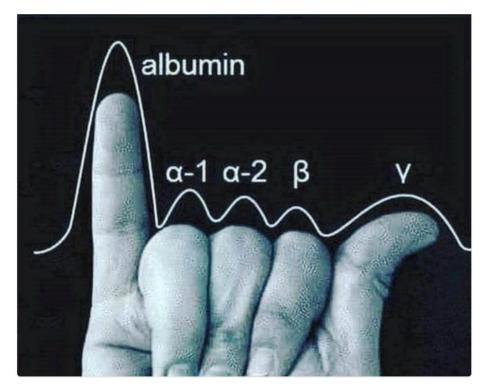
Stratification factors


· Number of lines of prior therapy (1 vs 2-3 vs ≥4)

MAYO CLINIC

ISS disease stage (I vs II vs III)

APOLLO PFS (FU 16.9 mo)



• Median PFS among patients refractory to lenalidomide was 9.9 months for D-Pd and 6.5 months for Pd

Dimopoulos MA, et al. ASH 2020. Abstract 412.

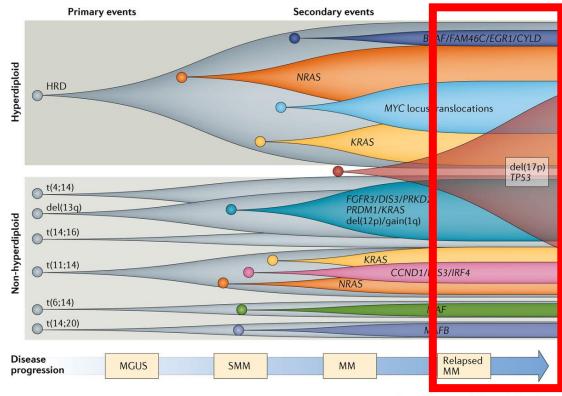
Thank you!

Management of Heavily Pretreated Multiple Myeloma

Keith Stewart, MBChB, MBA

Treatment of Relapsed Multiple Myeloma

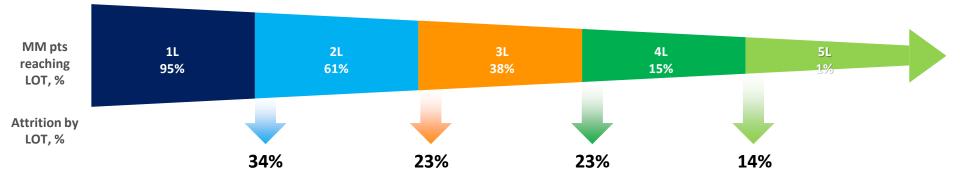
Keith Stewart, MBChB


Professor of Medicine Director, Princess Margaret Cancer Centre Toronto What approximate percentage of MM patients are estimated to survive long enough to receive third-line therapy?

- a) 90%
- b) 80%
- c) 65%
- d) 50%
- e) 40%

Which of the following is a true statement about belantamab mafodotin?

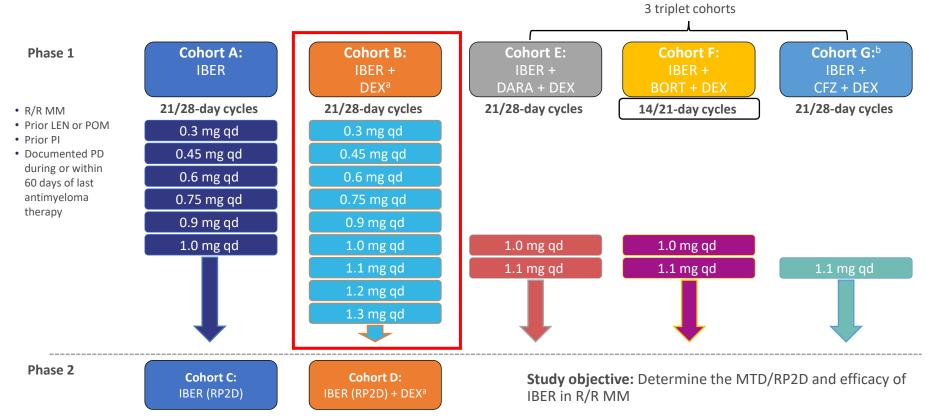
- a) Ocular toxicity can be reduced by starting with graduated dosing
- b) A less common but significant toxicity is early onset cytokine release syndrome
- c) The response rate is 30%–35% partial response or better
- d) The response rate in first relapse is 72%
- e) Ocular toxicity is manageable with steroid eye drops


Relapsed MM Is a Biologically and Genetically Heterogeneous Disease

Nature Reviews | Clinical Oncology

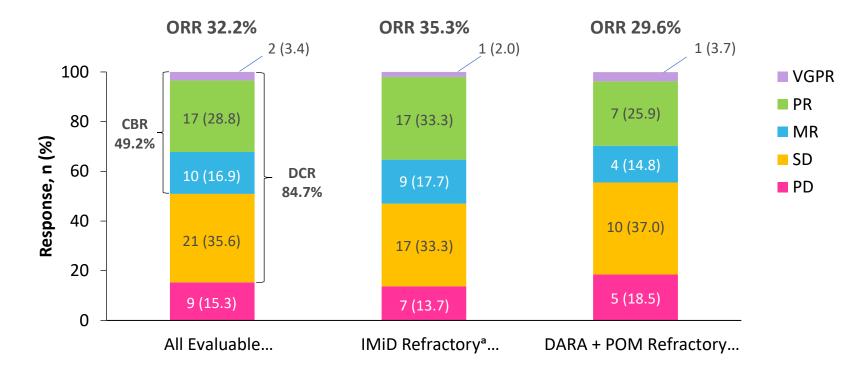
Manier S, et al. Nat Rev Clin Oncol. 2017;14(2):100-113.

Only a Few MM Patients Reach Later Lines of Therapy



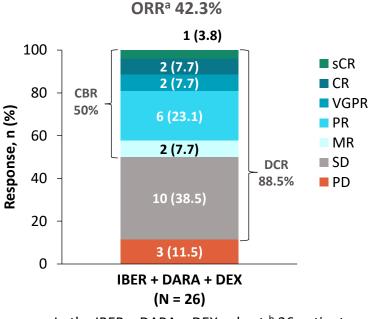
In every new LOT, ~15%–35% of patients are lost

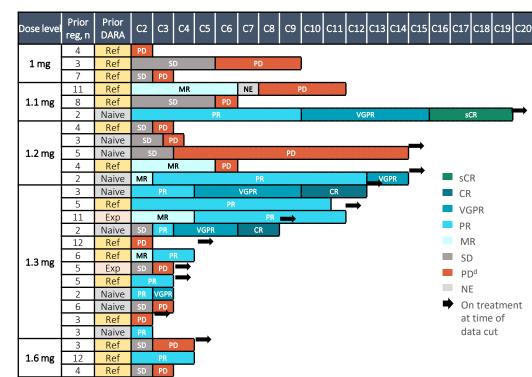
Figure adapted from: Yong K, et al. Br J Haematol. 2016;175(2):252-264.


What to Do After Lenalidomide and Pomalidomide?

Iberdomide MM-001 Phase 1b/2a Trial: Study Design

^aDEX given at a dose of 40 mg (20 mg in patients aged >75 years) on days 1, 8, 15, and 22 of each 28-day cycle. ^bCFZ dosed once weekly (Cohort G1) or twice weekly (Cohort G2). CFZ, carfilzomib; DEX, dexamethasone; MTD, maximum tolerated dose; PD, progressive disease; PI, proteasome inhibitor; qd, once daily; RP2D, recommended phase 2 dose; RRMM, relapsed/refractory multiple myeloma. Lonial S, et al. ASCO 2019. Abstract 8006.

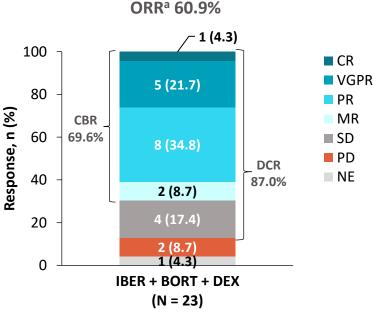

Response


Evaluable patients include those who have received ≥ 1 dose of IBER, had measurable disease at baseline, and ≥ 1 postbaseline response assessment. ^aIncludes LEN and POM.

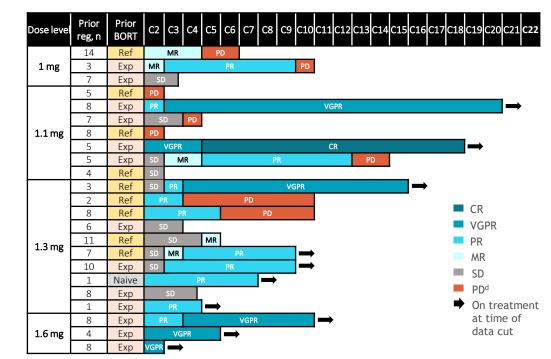
CBR, clinical benefit rate; DCR, disease control rate; MR, minimal response; ORR, overall response rate; PR, partial response; SD, stable disease; VGPR, very good partial response. Lonial S, et al. ASCO 2019. Abstract 8006.

Best Response: IBER + DARA + DEX Cohort

 In the IBER + DARA + DEX cohort,^b 26 patients were IMiD refractory, 15 were anti-CD38 refractory (all DARA), and 13 were triple-class refractory^c



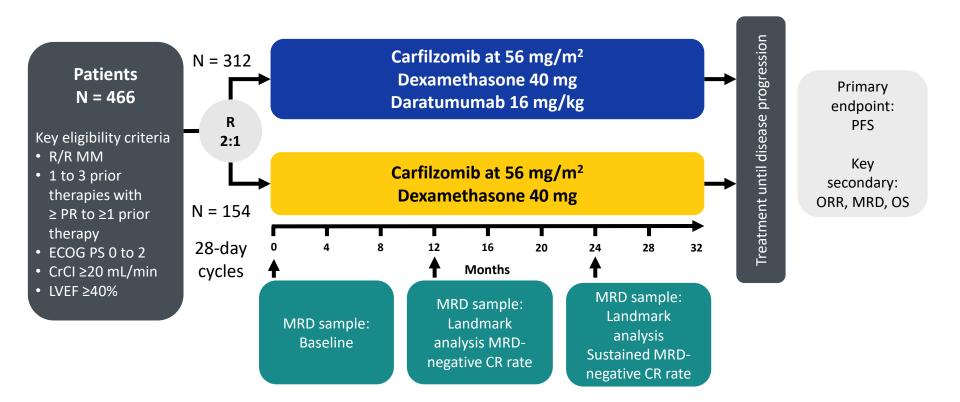
Median time to response was 4.1 (range 4.0–12.0) weeks


^aPR or better. ^bFull analysis population (N = 27). ^cDefined as refractory to ≥1 IMiD, 1 PI, and 1 anti-CD38 mAb. ^dOne patient in the 1.2-mg group and 2 patients in the 1.3-mg group had an unconfirmed PD as of the data cutoff date.

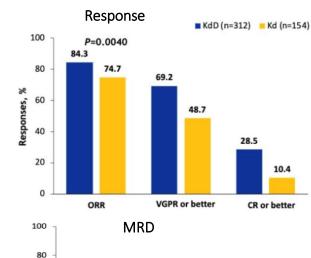
CBR, clinical benefit rate; CR, complete response; DCR, disease control rate; Exp, exposed; MR, minimal response; MTD, maximum tolerated dose; NE, not evaluable; ORR, overall response rate; PD, progressive disease; PR, partial response; Ref, refractory; reg, regimen; sCR, stringent complete response; SD, stable disease; VGPR, very good partial response. van de Donk NWCJ, et al. ASH 2020. Abstract 724.

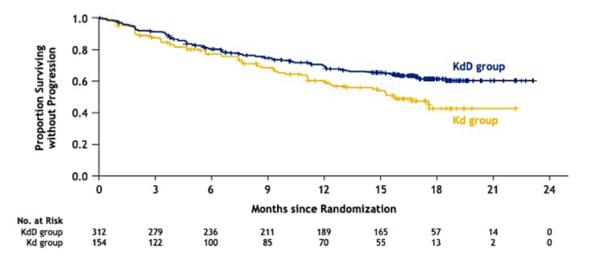
Best Response: IBER + BORT + DEX Cohort

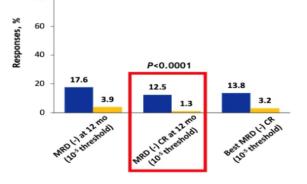
 In the IBER + BORT + DEX cohort,^b 18 patients were IMiD refractory, 15 were PI refractory, 9 were BORT refractory, and 9 were triple-class refractory^c



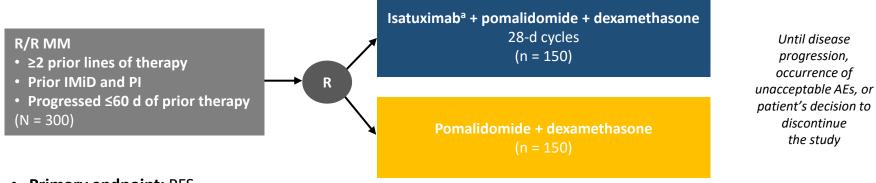
• Median time to response was 3.6 (range 3.0–13.1) weeks


^aPR or better. ^bFull analysis population (N = 23). ^cDefined as refractory to ≥1 IMiD, 1 PI, and 1 anti-CD38 mAb. ^dOne patient in the 1.1-mg group had an unconfirmed PD as of the data cutoff date. van de Donk NWCJ, et al. ASH 2020. Abstract 724.


NOVEL COMBINATIONS?


CANDOR: CAR-DARA-DEX vs CAR-DEX

CANDOR: Response and PFS


	KdD (n = 312)	Kd (n = 154)	
Median follow-up time, months	16.9	16.3	
Progression/death, n (%)	110 (35%)	68 (44%)	
Median PFS, months	NE	15.8	
HR (KdD/Kd) (95% CI)	0.63 (0.46–0.85)		
P value (1-sided)	.0014		

Usmani SZ, et al. ASH 2019. Abstract LBA6.

CANDOR: AEs of Interest

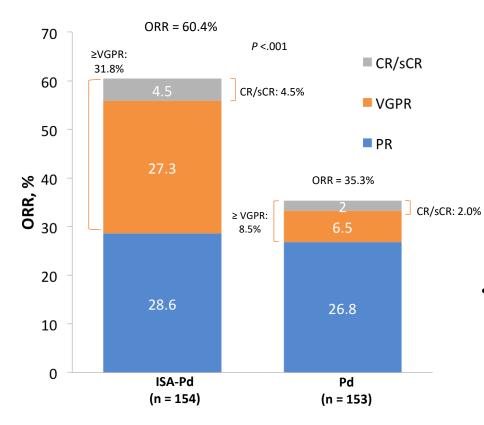
AE, n (%)	CAR-DARA-DEX (n = 308)		CAR-DEX (n = 153)	
	All grades	Grade ≥3	All grades	Grade ≥3
Acute renal failure	18 (5.8)	9 (2.9)	12 (7.8)	10 (6.5)
Cardiac failure	23 (7.5)	12 (3.9)	16 (10.5)	13 (8.5)
Ischemic heart disease	13 (4.2)	9 (2.9)	5 (3.3)	4 (2.6)
Respiratory tract infection	225 (73.1)	89 (28.9)	84 (54.9)	24 (15.7)
Peripheral neuropathy	53 (17.2)	3 (1.0)	13 (8.5)	0
Hypertension	98 (31.8)	55 (17.9)	44 (28.8)	21 (13.7)
IRR (on same day as any K)	126 (40.9)	38 (12.3)	43 (28.1)	8 (5.2)
DARA-related infusion reactions	56 (18.2)	7 (2.3)	0	0
Viral infections	63 (20.5)	19 (6.2)	22 (14.4)	3 (2.0)

Phase 3 ICARIA-MM Study: Isatuximab + Pomalidomide-Dexamethasone in R/R MM^{1,2}

Until disease

progression,

occurrence of

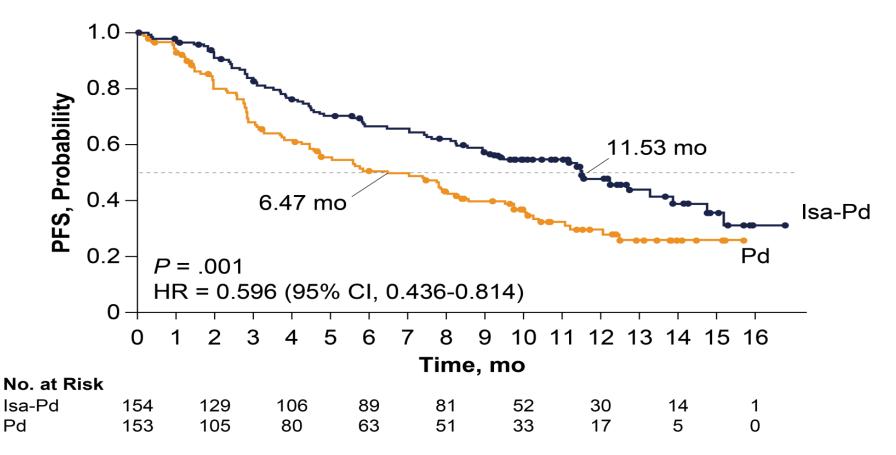

discontinue

the study

- Primary endpoint: PFS
- Key secondary endpoints: ORR, OS, safety

^aIsatuximab 10 mg/kg IV on d 1, 8, 15, and 22 in the first cycle; d 1 and 15 in subsequent cycles. Pomalidomide 4 mg on d 1-21. Dexamethasone 40 mg for patients aged <75 yr and 20 mg for patients aged \geq 75 yr on d 1, 8, 15, and 22. 1. Richardson PG, et al. ASCO 2019. Abstract 8004; 2. https://clinicaltrials.gov/ct2/show/NCT02990338. Accessed September 6, 2019.

ICARIA-MM: Response

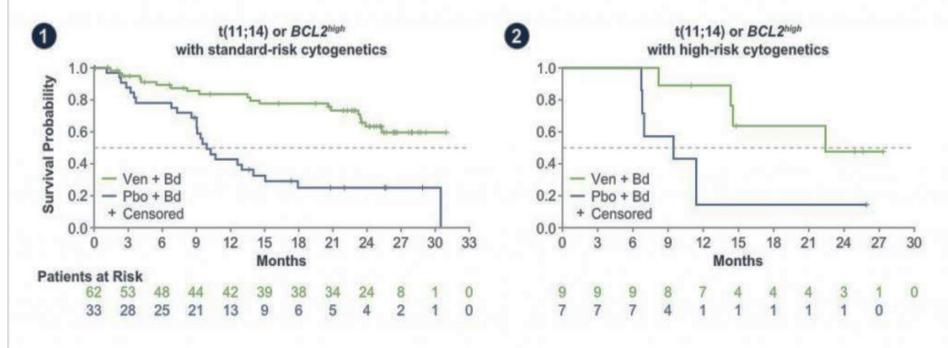


- Median time to first response: ISA-Pd = 35 days vs Pd = 58 days
- True CR rate in ISA-Pd underestimated because of ISA interference with M-protein measurement

	ISA-Pd (n = 154)	Pd (n = 153)
nCR, %	15.6	3.3

MRD negativity at 10⁻⁵ (ITT): 5.2% for ISA-Pd vs 0% for Pd

ICARIA-MM: PFS (by IRC)¹



1. Richardson PG, et al. ASCO 2019. Abstract 8004.

NEW SMALL MOLECULES

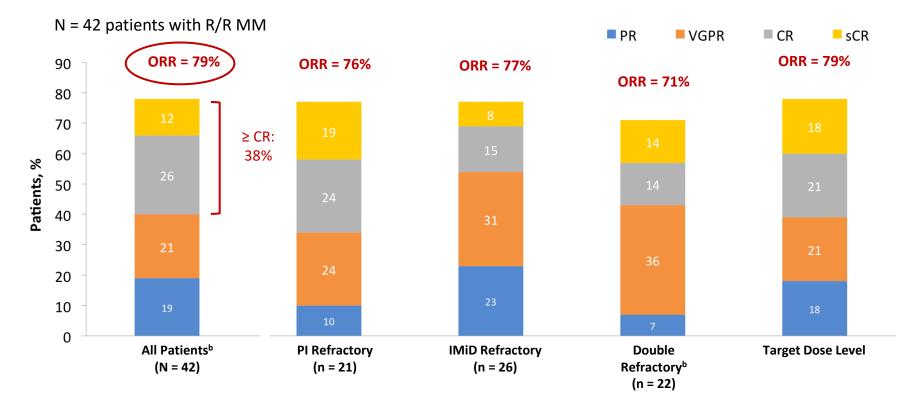
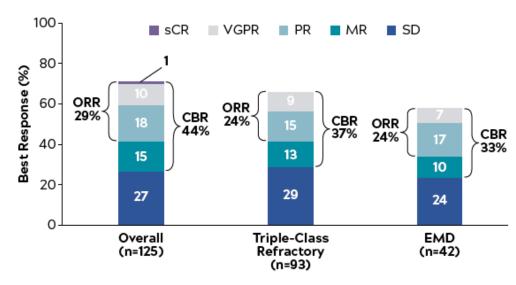

Venetoclax-Bortezomib-DEX Highly Active in t(11;14) or High BCL-2

Figure 4. Investigator-Assessed PFS by BCL2 Gene Expression and Cytogenetic Risk Status

Harrison S, et al. ASH 2019. Abstract 142.

... And With Carfilzomib-Dexamethasone^a



^aData cutoff: September 17, 2018. ^bOne patient died within the first 2 weeks of dosing; no data available. Costa LJ, et al. ASH 2018. Abstract 303.

HORIZON: Melflufen

- Patients with R/R MM refractory to pomalidomide or anti-CD38 mAb or both
- ≥2 prior lines of therapy including an IMiD and a Pl

• ECOG PS ≤2

TEAE	Grade 3, n (%)	Grade 4, n (%)
Anemia	56 (36)	1 (1)
Neutropenia	47 (31)	54 (35)
Thrombocytopenia	32 (21)	74 (48)
↓ WBC	13 (8)	15 (10)
Pneumonia	11 (7)	2 (1)
Febrile neutropenia	6 (4)	2 (1)
Lymphopenia	6 (4)	2 (1)
Leukopenia	4 (3)	6 (4)

Melflufen + Dexamethasone in Combination With Daratumumab: Overall Response (N = 33)

Subgroup	Best Confirmed Response, Patients, n								Patients, %	
	>CR	VGPR	PR	MR	SD	PD	NA	ORR	CBR	
Melflufen 30 mg (n = 6)	0	4	1	0	0	0	1 ^a	83	83	
Melflufen 40 mg (n = 27)	2	6	11	1	2	1	4 ^b	70	74	
Total (N = 33)	2	10	12	1	2	1	5	73	76	

- ORR in patients was similar for both cohorts
 - 30 mg: 83%
 - 40 mg: 70%
 - 30 + 40 mg: 73%

^aOne patient had an unconfirmed PD in the 30-mg dose cohort.

^bFour patients had unconfirmed responses in the 40-mg dose cohort: 2 PD, 1 SD, and 1 PR.

Data cutoff date: 19 October 2020.

CBR, clinical benefit rate; CR, complete response; MR, minor response; NA, not assessed; NR, not reached; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease; VGPR, very good PR.

Mateos MV, et al. ASH 2019. Abstract 1883.

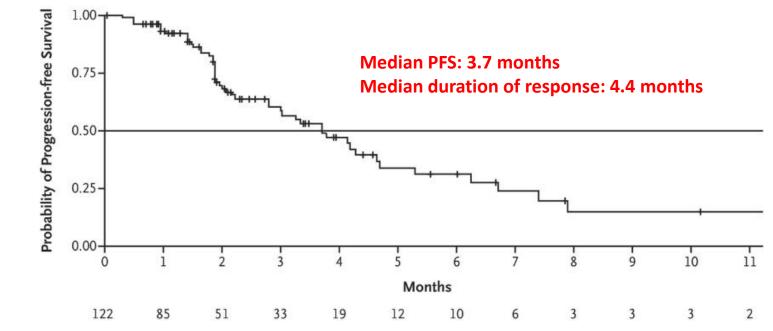
STORM Part II Study Design

Oral selinexor 80 mg + dexamethasone 20 mg Selinexor-dexamethasone twice weekly, days 1, 3, until disease progression

- Patient population
 - MM, prior treatment with PI, IMiD, CD38 mAb, alkylator, steroids
 - Refractory to ≥1 PI, ≥1
 IMiD, daratumumab, steroid

- Primary endpoint
 - Overall response rate
- Secondary endpoints
 - Duration of response
 - Clinical benefit rate
 - Overall survival
 - PFS

- Key eligibility criteria
 - Creat clearance ≥20
 mL/min
 - ANC ≥1,000/mm³
 - Plt ≥75,000
 - Hemoglobin ≥8.5 g/dL


Phase 2 STORM Trial: Response Assessment

Variable	N	ORR (CR + VGPR + PR)	CBR (CR + VGPR + PR + MR)
Total	122	32 (26%)	48 (39%)
Penta-refractory	83	21 (25%)	31 (37%)
Quad-refractory	101	26 (26%)	37 (37%)
High-risk cytogenetic feature ^a	65	12 (18%)	24 (37%)

^aThis category included any of del(17p)/p53, t(14;16), t(4;14), or 1q21 (1q gain >2). Chari A, et al. *N Engl J Med.* 2019;381(8):727-738.

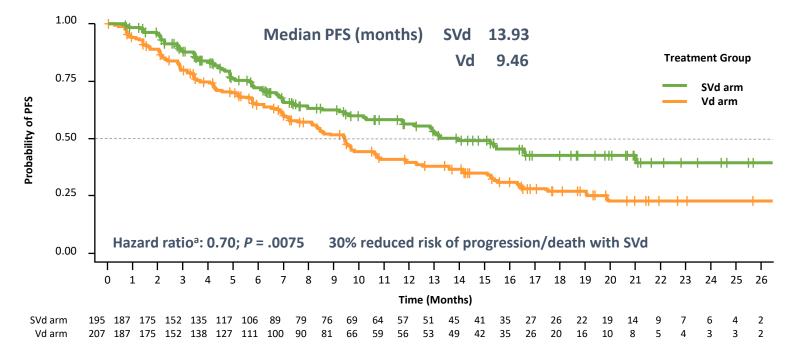
STORM Trial: Kaplan-Meier Analysis for PFS

A Progression-free Survival

No. at Risk

STORM: Selinexor Toxicity

Most commonly occurring grade ≥3 AEs


- Hematologic, GI related, constitutional symptoms, and hyponatremia
- Typically responsive to dose modification and standard supportive care agents

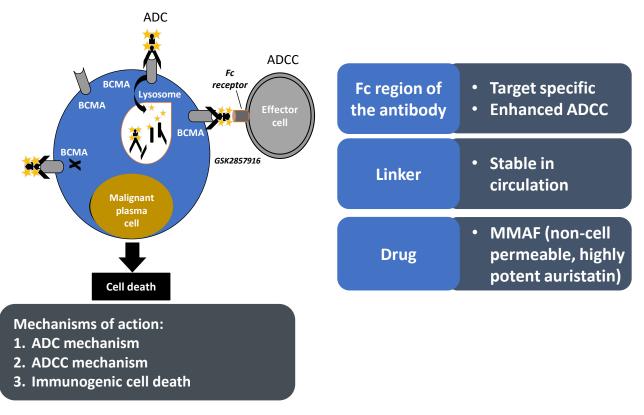
Early identification of AEs, frequent assessment, and use of supportive care measures deemed crucial to toxicity management, including

- Fatigue: methylphenidate
- **GI:** ondansetron, olanzapine, or substance P/neurokinin antagonists
- Hyponatremia: hydration (oral or IV), salt replacement
- Thrombocytopenia: romiplostim or eltrombopag if selinexor dose held

BOSTON Trial: Selinexor-Vd Compared With Vd

Median follow-up: 13.2 and 16.5 months in SVd and Vd arms, respectively.

Intention-to-treat (ITT) population N = 402; data cutoff February 18, 2020. ^aHazard ratio 95% CI = 0.53–0.93 one-sided *P* value. Dimopoulos MA, et al. ASCO 2020. Abstract 8501.


BOSTON Trial: Safety – Selected Nonhematologic TEAEs*

	SVd (r	SVd (n=195)		=204)
	Any Grade	Grade 3/4	Any Grade	Grade 3/4
Non-hematological (%)				
Nausea	50.3	7.7	9.8	0
Fatigue	42.1	13.3	18.1	1.0
Decreased Appetite	35.4	3.6	5.4	0
Diarrhea	32.3	6.2	25.0	0.5
Peripheral Neuropathy ⁺	32.3	4.6	47.1	8.8
Upper Respiratory Tract Infection [‡]	29.2	3.6	21.6	1.5
Weight decreased	26.2	2.1	12.3	1.0
Asthenia	24.6	8.2	13.2	4.4
Cataract§	21.5	8.7	6.4	1.5
Vomiting	20.5	4.1	4.4	0

*Shown are events that occurred in at least 15% of patients and had a >5% difference between treatment arms. Adverse events were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.03. For patients who crossed over, adverse events that occurred after the crossover are not included. [†]Includes high-level term Peripheral Neuropathies NEC. [‡]Includes upper respiratory infection, nasopharyngitis, pharyngitis, respiratory syncytial virus infection, respiratory tract infection, rhinitis, and viral upper respiratory tract infection. [§] Per ophthalmology exam after 24% of patients on SVd arm vs 8.5% of patients on the Vd arm had new-onset cataracts, and worsening of cataracts on study was noted in 20.5% of patients on the SVd arm vs 7.9% on the Vd arm. Data cutoff February 18, 2020. Dimopoulos MA, et al. ASCO 2020. Abstract 8501.

Belantamab Mafodotin: BCMA-Targeted ADC

- Belantamab mafodotin
 - Humanized, afucosylated
 IgG1 anti-BCMA antibody
 - Conjugated to microtubuledisrupting agent MMAF via a stable, protease-resistant maleimidocaproyl linker
- Preclinical studies demonstrate its selective and potent activity

Belantamab Mafodotin: DREAMM-2 – Response

ORR

- 30/97 patients (31%) in the 2.5-mg/kg cohort
- 34/99 patients (34%) in the 3.4-mg/kg cohort

Adverse events

- Most common grade 3/4 AE
 - Keratopathy (27% in the 2.5-mg/kg cohort; 21% in the 3.4-mg/kg cohort)
 - Thrombocytopenia (20% and 33%)
 - Anemia (20% and 25%)
- Serious AE in 40% in 2.5-mg/kg cohort and 47% in the 3.4-mg/kg cohort
- 2 deaths were potentially treatment related
 - Sepsis in the 2.5-mg/kg cohort and hemophagocytic lymphohistiocytosis in the 3.4-mg/kg cohort

Summary

- No "one-size-fits-all"
- Daratumumab (or isatuximab) as a backbone logical
- Carfilzomib > bortezomib > ixazomib
- <u>It's not either-or</u> DARA and carfilzomib is a powerful combination
- Iberdomide > pomalidomide > lenalidomide
- Save selinexor and melflufen for "no other options"
- Belamaf very active, but eye toxicity limiting
- Venetoclax t(11;14)

What approximate percentage of MM patients are estimated to survive long enough to receive third-line therapy? [repeated question]

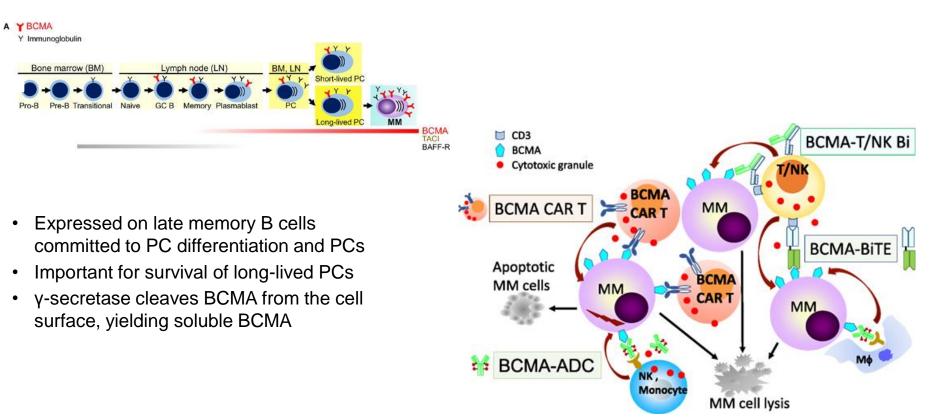
- a) 90%
- b) 80%
- c) 65%
- d) 50%
- e) 40%

Which of the following is a true statement about belantamab mafodotin? [repeated question]

- a) Ocular toxicity can be reduced by starting with graduated dosing
- b) A less common but significant toxicity is early onset cytokine release syndrome
- c) The response rate is 30%–35% partial response or better
- d) The response rate in first relapse is 72%
- e) Ocular toxicity is manageable with steroid eye drops

New and Future Therapies for Multiple Myeloma

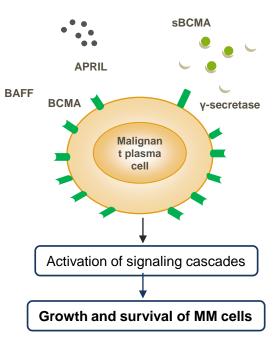
Irene Ghobrial, MD



Promising New Developments in Relapsed MM: Recent Clinical Updates

Irene Ghobrial, MD Lavine Family Chair of Preventative Cancer Therapy Professor of Medicine Harvard Medical School Dana-Farber Cancer Institute Boston, MA

BCMA in Multiple Myeloma


Rationale for Targeting BCMA

BCMA is a cell surface protein expressed on late-stage B cells and plasma cells but virtually absent on naive and memory B cells¹⁻³

BCMA is highly expressed on malignant plasma cells in all patients with MM³⁻⁵

 BCMA ligands, BAFF and APRIL, are detected in increased levels in the circulation of patients with MM^{3,5}

BCMA is essential for the proliferation and survival of malignant plasma cells³

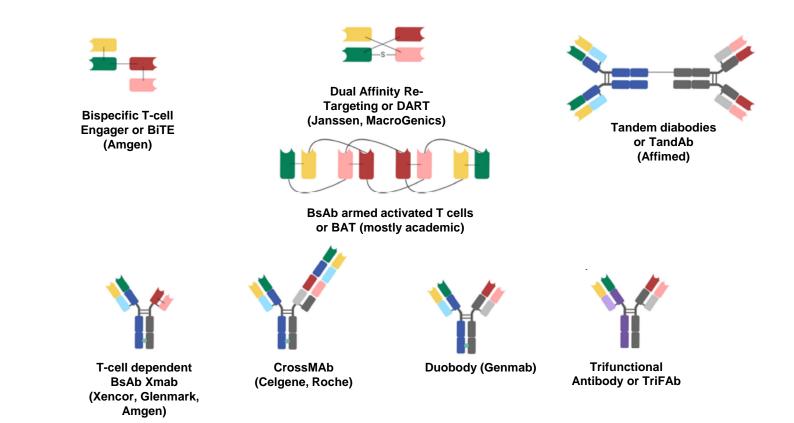
Comparing Options

	CAR T	Bispecifics	ADCs
Treatment logistics	Specialized center; need to wait for production	TBA, likely community friendly, off-the-shelf Need for long acting	Community friendly, off-the-shelf
Length of treatment	~2 months	??	Possibly limited cycles
Toxicities	CRS, neurotoxicity, cytopenias	CRS, pneumonia	Corneal, thrombocytopenia
Cost	? \$400K	? But have to consider length of treatment	\$24K/month

Belantamab Mafodotin in Combination With Pomalidomide and Dexamethasone for RR MM: Dose-Finding Study (Part 1)

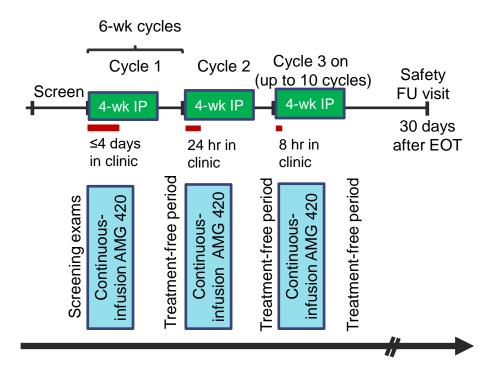
	Part 1 DLT 3+3		Part 1 RP2D Determination up to 12 patients/cohort								
			D8	D15	D21	C2D1			(C3D1	
Po	m 4 mg po	_			->				->	-	
De	ex 40 mg* po	D	D	D	D	D	D	D	D	D	D
1.9	92/2.5 SINGLE	в				в				в	
2.	5/3.4 SPLIT**	в	В			в	в			в	в
BE	LAMAF LOADING	2.5				1.92				1.92	

BELAMF 1.92 SINGLE (cohort -1), 2.5 SINGLE/LOADING (cohort 1a) and SPLIT (cohort 1b) or 3.4 SPLIT (cohort 2) mg/kg IV; *20 mg ≥75 yo; **2.5 or 3.4 mg/kg, split equally on days 1 and 8 Q4W; treatment until PD or toxicity.


Characteristic	n=37 (%)
Age, median (range), years	64 (36-81)
ISS Stage I/II/III	17 (45.9%)/16 (43.2%)/1 (2.7%)
High-risk cytogenetics [*]	9/19 (47%)
Number of prior lines of therapy, median (range)	3 (1-5)
Autologous Stem Cell Transplant (ASCT)	24 (64.9%)
LEN exposed	37 (100%)
LEN refractory	33 (89.2%)
Pl exposed	37 (100%)
Bortezomib	36 (97.3%)
Carfilzomib	13 (35.1%)
PI refractory	30 (81.1%)
DARA exposed	16 (43.2%)
DARA refractory	16 (43.2%)
LEN and PI refractory	27 (73%)
LEN, PI, and DARA refractory	13 (35.1%)

Part 2	
RP2D	1
N=23	
(+12 in	
Part 1 =	
35	
evaluable	
for ORR)	

2	TEAE	Any Grade	≥ Grade 3
	Keratopathy	28 (75.7%)	19 (51.4%)
2D 23	Neutropenia	21 (56.8%)	15 (40.5%)
1 =	Thrombocytopen	ia 18 (48.6%)	12 (32.4%)
5 able	Decreased visual	acuity 17 (45.9%)	6 (16.2%)
DRR)	Fatigue	15 (40.5%)	4 (10.8%)
		Response Rates	
	100 100 100 2VGPR: 2VGPR: 20.6 20.6 52.9 0 14.7 0 AL n=	68% ≥VGPR: 75% % 16.8% % 58.3% % 16.8% L IMID/PI REFRACTORY	ORR: 100% 2VGPR: 72% 27.3% VGPR CR MRD negativity by MFC (<10 ⁻⁵) detected in 2/2 evaluable patients in CR IMID/PI/Dara Refractory n=11
utcome (median)	All	IMiD/PI Refrac	tory IMiD/PI/Dara Refract
llow-up, months (range)	7.8 (1.9, 20	0.3) 7.8 (1.9, 18.	9) 7.4 (2.1, 16.1)
S, months (95% CI)	NR (10.8, -) NR (10.8, NI	R) 11.1 (4.9, NR)


Trudel S. et al. ASH 2020. Abstract 725.

Bispecific Antibodies: Many Different Platforms

AMG 420 Phase I Study: Design

Relapsed/Refractory Multiple Myeloma, ≥2 Prior Lines of Therapy, ≥1 IMID, ≥1 PI

- First-in-human (FIH) phase I doseescalation study of AMG 420 for up to 10 cycles
- Single-patient cohorts [0.2–1.6 µg/day (d)] were followed by cohorts of 3–6 patients (3.2–800 µg/d)
- Objectives
 - Safety
 - Maximum tolerated dose (MTD)
 - Antitumor activity

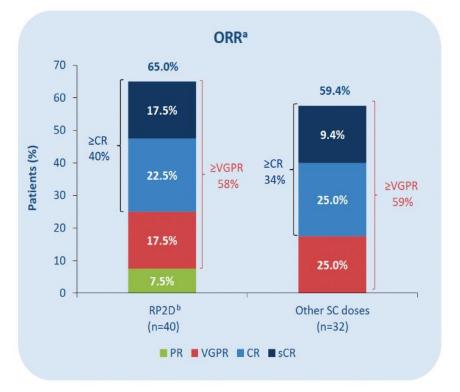
TECLISTAMAB, A B-CELL MATURATION ANTIGEN × CD3 BISPECIFIC ANTIBODY, IN RELAPSED/REFRACTORY MULTIPLE MYELOMA: UPDATED RESULTS OF A PHASE 1, FIRST-IN-HUMAN STUDY

Niels WCJ van de Donk^{1,*}, Alfred L Garfall², Maria-Victoria Mateos³, Amrita Y Krishnan⁴, Hareth Nahi⁵, Jesús F San-Miguel⁶, Albert Oriol⁷, Laura Rosiñol⁸, Ajai Chari⁹, Manisha Bhutani¹⁰, Lionel Karlin¹¹, Lotfi Benboubker¹², Lixia Pei¹³, Raluca Verona¹³, Suzette Girgis¹³, Tara Stephenson¹³, Jenna D Goldberg¹⁴, Arnob Banerjee¹³, Saad Zafar Usmani¹⁰

¹Amsterdam University Medical Center, VU University Medical Center, Amsterdam, Netherlands; ²Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; ³Hospital Clínico Universitario de Salamanca, Salamanca, Spain; ⁴City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ⁵Karolinska University Hospital at Huddinge, Stockholm, Sweden; ⁶Clínica Universidad de Navarra, CIMA, CIBERONC, IDISNA, Pamplona, Spain; ⁷Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain; ⁸Institute of Hematology and Oncology, IDIBAPS Hospital Clínic University of Barcelona, Barcelona, Spain; ⁹Mount Sinai School of Medicine, New York, NY, USA; ¹⁰Levine Cancer Institute/Atrium Health, Charlotte, NC, USA; ¹¹Service d'Hématologie Clinique, Centre Hospitalier Lyon Sud, Pierre-Bénite, France; ¹²Service d'Hématologie et Thérapie Cellulaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire, Tours, France; ¹³Janssen Research & Development, Spring House, PA, USA; ¹⁴Janssen Research & Development, Raritan, NJ, USA

An electronic version of the presentation can be viewed by scanning the QR code or accessing this link: <u>https://oncologysciencehub.com/EHA2021/teclistamab/vandeDonk</u>. The QR code is intended to provide scientific information for individual reference. The PDF should not be altered or reproduced in any way.

TUAL


TECLISTAMAB Patient Demographics and Disease Characteristics

Characteristic	SC Total n=73	RP2D (1500 µg/kg SC QW)³ n=40	Characteristic	SC Total n=73	RP2D (1500 µg/kg SC QW)ª n=40
Age, years, median (range)	64.0 (39–84)	62.5 (39–84)	Prior number of lines of therapy, median (range)	5.0 (2–14)	5.0 (2–11)
Aged ≥70 years, n (%)	18 (25)	9 (23)	Prior transplantation, n (%)	63 (86)	34 (85)
Sex, n (%)			Exposure status, n (%)		
Male	43 (59)	26 (65)	Triple-class ^f	71 (97)	40 (100)
Female	30 (41)	14 (35)	Penta-drug ^g	50 (68)	26 (65)
Time since diagnosis, years, median (range)	5.9 (0.8–23.5)	5.7 (0.8–17.4)	Refractory status, n (%)		
Extramedullary soft tissue plasmacytomas ≥1, n (%) ^b	11 (15)	8 (20)	- РI ^ћ	65 (89)	35 (88)
Bone marrow plasma cells ≥60%, n (%) ^c	12 (18)	3 (8)	Carfilzomib	49 (67)	27 (68)
High-risk cytogenetics, n (%) ^d	16 (30)	10 (37)	– IMiD ⁱ	70 (96)	38 (95)
Weeker L. M. C. L. L. L. M. Martina and	10 (30)	10 [37]	Pomalidomide	55 (75)	28 (70)
ISS stage, n (%) ^e			Anti-CD38 mAb ^j	68 (93)	39 (98)
1	36 (50)	24 (62)	Triple-class ^f	58 (79)	33 (83)
н	25 (35)	11 (28)	Penta-drug ^g	28 (38)	15 (38)
Ш	11 (15)	4 (10)	Refractory to last line of therapy	64 (88)	33 (83)

*Step-up doses of 60 µg/kg and 300 µg/kg; *Soft-tissue component of a bone-based plasmacytoma not included; Percentages calculated from n=66 for SC total and n=36 at RP2D; ⁴del(17p), t(4:14), and/or t(14;16); percentages calculated from n=53 for SC total and n=27 at RP2D; *At baseline; percentages calculated from n=72 for SC total and n=39 at RP2D; ¹>1 NiD, and 1 anti-CD38 mAb; *>2 PI, >2 IMiD, and 1 anti-CD38 mAb; *Bortezomib, carfilzomib, and/or ixazomib; ¹Thalidomide, lenalidomide, and/or pomalidomide; JDaratumumab and/or isatuximab. IMiD, immunomodulatory drug; ISS, international Staging System; mAb, monoclonal antibody; PI, proteasome inhibitor; QW, once weekly; RP2D, recommended phase 2 dose; SC, subcutaneous.

Overall Response Rate

- The RP2D of 1500 µg/kg SC QW has been administered to 40 patients with a median duration of follow-up of 6.1 months (range: 1.2–12.2)
 - ORR was 65%, with 58% of patients achieving ≥VGPR and 40% achieving ≥CR
 - Median time to first confirmed response was 1.0 month (range: 0.2–3.1)
 - ORR in 33 triple-class refractory patients was 61%
- Of 6 evaluable patients in RP2D cohorts as of the data cut-off date, all achieved MRD-negative CR/sCR at 10⁻⁶ (n=5) or 10⁻⁵ (n=1)
 - Across IV and SC cohorts, 18/26 evaluable patients (69%) had MRD-negative CR/sCR at 10⁻⁶ (n=16) or 10⁻⁵ (n=2)
 - 2 evaluable patients with CR >12 months had sustained MRD negativity

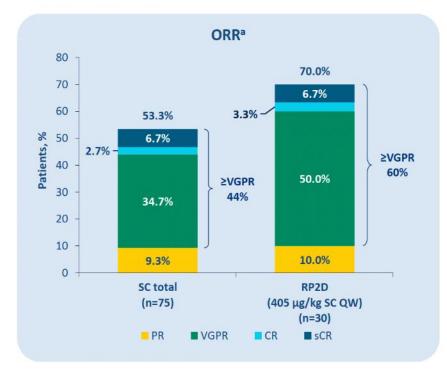
UPDATED RESULTS OF A PHASE 1, FIRST-IN-HUMAN STUDY OF TALQUETAMAB, A GPRC5D × CD3 BISPECIFIC ANTIBODY, IN RELAPSED/REFRACTORY MULTIPLE MYELOMA

Amrita Y. Krishnan¹, Jesus G Berdeja², Albert Oriol³, Niels WCJ van de Donk⁴, Paula Rodríguez-Otero⁵, Elham Askari⁶, Maria-Victoria Mateos⁷, Monique C Minnema⁸, Luciano J Costa⁹, Raluca Verona¹⁰, Suzette Girgis¹⁰, Thomas Prior¹⁰, Brandi W Hilder¹⁰, Jeffery Scott Russell¹⁰, Jenna D Goldberg¹¹, Ajai Chari¹²

¹Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN, USA; ²City of Hope, Duarte, CA, USA; ³Institut Català d'Oncologia and Institut Josep Carreras; Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain; ⁴Amsterdam University Medical Center, VU University Medical Center, Amsterdam, Netherlands; ⁵Clínica Universidad de Navarra, Navarra, Spain; ⁶Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; ⁷Hospital Clínico Universitario de Salamanca, Spain; ⁸University Medical Center Utrecht, Utrecht, Netherlands; ⁹University of Alabama at Birmingham, Birmingham, AL, USA; ¹⁰Janssen R&D, Spring House, PA, USA; ¹¹Janssen R&D, Raritan, NJ, USA; ¹²Mount Sinai School of Medicine, New York, NY, USA

> An electronic version of the poster can be viewed by scanning the QR code or accessing this link http://oncologysciencehub.com/eha2021/talquetamab/Krishnan. The QR code is intended to provide scientific information for individual reference. The PDF should not be altered or reproduced in any way.

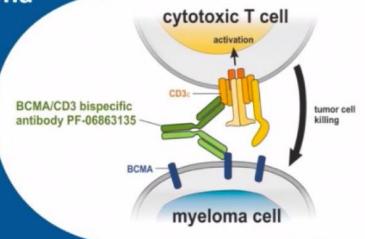
Patient Demographics and Disease Characteristics


Characteristic	SC Total n=82	RP2D (405 µg/kg SC QW)* n=30
Age, years, median (range)	63.0 (42-80)	61.5 (46-80)
Age ≥70 years, n (%)	22 (27)	7 (23)
Sex, n (%)		
Male	47 (57)	19 (63)
Female	35 (43)	11 (37)
Years since diagnosis, median (range)	5.9 (1–20)	5.6 (2–20)
Extramedullary plasmacytomas ≥1, n (%) ^b	27 (33)	10 (33)
Bone marrow plasma cells ≥60%, n (%) ^c	13 (17)	6 (21)
ISS stage, n (%) ^d		
L	26 (32)	12 (40)
Ш	36 (44)	13 (43)
III	13 (16)	3 (10)
Prior transplantation, n (%)	71 (87)	27 (90)

Characteristic	SC Total n=82	RP2D (405 μg/kg SC QW) ^a n=30
Prior lines of therapy, n, median (range)	6.0 (2-17)	6.0 (2–14)
Exposure status, n (%)		
Prior BCMA therapy ^e	20 (24)	8 (27)
Triple-class ^f	81 (99)	30 (100)
Penta-drug ^g	64 (78)	24 (80)
Refractory status, n (%)		
Plh	69 (84)	25 (83)
Carfilzomib	54 (66)	19 (63)
IMiD ⁱ	76 (93)	28 (93)
Pomalidomide	67 (82)	26 (87)
Anti-CD38 mAb ^j	77 (94)	30 (100)
BCMA ^e	14 (17)	5 (16)
Triple-class ^f	62 (76)	23 (77)
Penta-drug ^g	<mark>23 (</mark> 28)	6 (20)
To last line of therapy	69 (84)	26 (87)

*Step-up doses of 10 µg/kg and 60 µg/kg; %Soft-tissue component of a bone-based plasmacytoma not included; Percentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=66 for SC total and n=27 at RP2D; Contentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=66 for SC total and n=27 at RP2D; derecentages calculated from n=76 for SC total and n=27 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=66 for SC total and n=27 at RP2D; derecentages calculated from n=76 for SC total and n=27 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=66 for SC total and n=27 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=66 for SC total and n=27 at RP2D; derecentages calculated from n=66 for SC total and n=27 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=66 for SC total and n=27 at RP2D; derecentages calculated from n=66 for SC total and n=27 at RP2D; derecentages calculated from n=66 for SC total and n=27 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=66 for SC total and n=27 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=66 for SC total and n=27 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=76 for SC total and n=29 at RP2D; derecentages calculated from n=76 for SC total and n=29

Overall Response Rate


- The RP2D of 405 μg/kg SC QW has been administered to 30 patients with a median follow-up of 6.3 months (range: 1.4–12.0) for responders
- At the RP2D:
 - 70.0% ORR (21/30)
 - Median time to first confirmed response was 1 month (range: 0.2–3.8)
 - 65.2% (15/23) of triple-refractory patients responded
 - 83.3% (5/6) of penta-refractory patients responded
- Of 6 evaluable patients across IV and SC cohorts, 4 had MRD-negative CR/sCR at 10⁻⁶, including 1 patient in RP2D cohort
 - MRD negativity was sustained 7 months post CR in 1 evaluable patient

Investigator assessment of evaluable patients who had ≥1 dose of talquetamab and ≥1 postbaseline disease evaluation per 2011 International Myeloma Working Group response criteria; includes unconfirmed response.
CR, complete response; IV, intravenous; MRD, minimal residual disease; ORR, overall response rate; PR, partial response; QW, once weekly; RP2D, recommended phase 2 dose; SC, subcutaneous; sCR, stringent complete response; VGPR, very good partial response.

MagnetisMM-1: Phase 1 Study of Elranatamab (PF-06863135), a B-Cell Maturation Antigen Targeted CD3-Engaging Bispecific Antibody, for Patients With Relapsed or Refractory Multiple Myeloma

Caitlin L Costello, MD Moores Cancer Center University of California San Diego La Jolla, CA, USA

June 11, 2021

Patient and Disease Characteristics

- 30 patients had received elranatamab SC by the data cutoff
 - 80 (n=6), 130 (n=4), 215 (n=4), 360 (n=4), 600 (n=6), and 1000 (n=6) μg/kg weekly

Characteristics	SC dosing total (N=30)			
Gender, n (%)				
Female	17 (56.7)			
Median age, y (range)	63.0 (46-80)			
≥65 y, n (%)	12 (40.0)			
R-ISS stage at initial diagnosis, n (%)				
Stage I	6 (20.0)			
Stage II	12 (40.0)			
Stage III	7 (23.3)			
Not reported	5 (16.7)			
Cytogenetic risk				
High	7 (23.3)			
Standard	19 (63.3)			
Unknown	4 (13.3)			

Data cutoff was February 4, 2021.

R-ISS=Revised International Staging System; SC=subcutaneous Definition of high cytogenetic risk includes t(4:14), t(14:16), del(17p), and del(13q).

Treatment-Emergent Adverse Events (All Causality) Occurring in ≥20% of Patients

Adverse event, n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Total (N=30)
Hematological					
Lymphopenia	0	0	6 (20.0)	19 (63.3)	25 (83.3)
Anemia	0	3 (10.0)	15 (50.0)	0	18 (60.0)
Neutropenia	0	0	7 (23.3)	9 (30.0)	16 (53.3)
Thrombocytopenia	3 (10.0)	2 (6.7)	5 (16.7)	6 (20.0)	16 (53.3)
Leukopenia	1 (3.3)	3 (10.0)	7 (23.3)	1 (3.3)	12 (40.0)
Non-hematological					
CRS	17 (56.7)	5 (16.7)	0	0	22 (73.3)
Injection site reaction	13 (43.3)	2 (6.7)	0	0	15 (50.0)
Nausea	5 (16.7)	5 (16.7)	1 (3.3)	0	11 (36.7)
Increased AST	5 (16.7)	2 (6.7)	3 (10.0)	0	10 (33.3)
Increased ALT	5 (16.7)	1 (3.3)	3 (10.0)	0	9 (30.0)
Diarrhea	6 (20.0)	2 (6.7)	1 (3.3)	0	9 (30.0)
Vomiting	7 (23.3)	1 (3.3)	0	0	8 (26.7)
Decreased appetite	5 (16.7)	2 (6.7)	0	0	7 (23.3)
Dry skin	5 (16.7)	2 (6.7)	0	0	7 (23.3)
Hypokalemia	1 (3.3)	5 (16.7)	1 (3.3)	0	7 (23.3)
Arthralgia	3 (10.0)	2 (6.7)	1 (3.3)	0	6 (20.0)
ICANS	3 (10.0)	3 (10.0)	0	0	6 (20.0)
Pyrexia	5 (16.7)	1 (3.3)	0	0	6 (20.0)

 No DLT was observed

Data cutoff was February 4, 2021. Reporting of TEAEs based on CTCAE version 4.03, except for CRS (Lee DW, et al. Biol Blood Marrow Transplant 2019;25:625).

ALT=alanine aminotransferase; AST=aspartate aminotransferase; CRS=cytokine release syndrome; CTCAE=Common Terminology Criteria for Adverse Events; DLT=dose-limiting toxicity; ICANS=immune effector cell-associated neurotoxicity syndrome; TEAE=treatment-emergent adverse event

Investigator IMWG Response

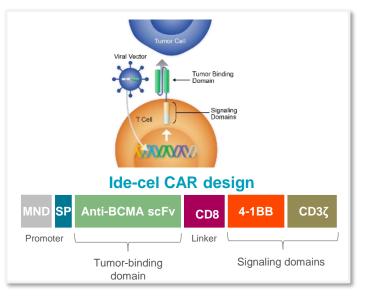
- Responses were observed beginning at 215 μg/kg
- At doses ≥215 µg/kg (n=20), confirmed ORR was 70% and CR/sCR rate was 30%
- At the RP2D of 1000 μg/kg (n=6), confirmed ORR was 83.3%
- Median duration of follow-up for patients treated at doses ≥215 µg/kg (n=20) was 7.7 months
- Median (range) time to response in the 14 responders was 22 (21–50) days

IMWG response, n (%)	215 µg/kg (n=4)	360 µg/kg (n=4)	600 µg/kg (n=6)	1000 µg/kg (n=6)	Total ≥215 μg/kg (n=20)
sCR	2 (50.0)	1 (25.0)	2 (33.3)	0	5 (25.0)
CR	0	0	0	1 (16.7)	1 (5.0)
VGPR	0	2 (50.0)	2 (33.3)	3 (50.0)	7 (35.0)
PR	0	0	0	1 (16.7)	1 (5.0)
MR	0	0	0	0	0
SD	2 (50.0)	0	1 (16.7)	0	3 (15.0)
PD	0	1 (25.0)	1 (16.7)	1 (16.7)	3 (15.0)
Confirmed ORR	2 (50.0)	3 (75.0)	4 (66.7)	5 (83.3)	14 (70.0)

CR=complete response; IMWG=International Myeloma Working Group; MR=minimal response; ORR=objective response rate; PD=progressive disease; PR=partial response; RP2D=recommended phase 2 dose; sCR=stringent complete response; SD=stable disease; VGPR=very good partial response

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

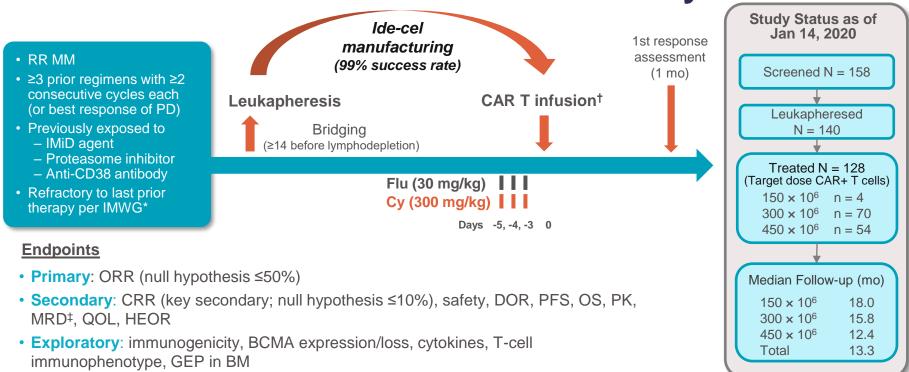

Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma

Nikhil C. Munshi, M.D., Larry D. Anderson, Jr., M.D., Ph.D., Nina Shah, M.D., Deepu Madduri, M.D., Jesús Berdeja, M.D., Sagar Lonial, M.D., Noopur Raje, M.D., Yi Lin, M.D., Ph.D., David Siegel, M.D., Ph.D., Albert Oriol, M.D., Philippe Moreau, M.D., Ibrahim Yakoub-Agha, M.D., Ph.D., Michel Delforge, M.D., Michele Cavo, M.D., Hermann Einsele, M.D., Hartmut Goldschmidt, M.D., Katja Weisel, M.D., Alessandro Rambaldi, M.D., Donna Reece, M.D., Fabio Petrocca, M.D., Monica Massaro, M.P.H., Jamie N. Connarn, Ph.D., Shari Kaiser, Ph.D., Payal Patel, Ph.D., Liping Huang, Ph.D., Timothy B. Campbell, M.D., Ph.D., Kristen Hege, M.D., and Jesús San-Miguel, M.D., Ph.D.

Introduction and Objectives

- Outcomes remain poor in triple-class-exposed RR MM patients who progress on IMiD[®] agents, proteasome inhibitors (PIs), and anti-CD38 antibodies, and there is no standard of care
 - Deep and durable responses uncommon¹⁻³
 - Median PFS of 3-4 mo; median OS of 9.3 mo⁴
- Ide-cel, a BCMA-directed CAR T-cell therapy, showed promising tolerability and efficacy in RR MM patients in the phase I CRB-401 study⁵
 - Evaluated doses of 50-800 × 10⁶ CAR+ T cells
 - ORR = 85%; CRR = 45%; median PFS = 11.8 mo; median
 DOR = 10.9 mo
 - − Grade \geq 3 CRS or neurotoxicity observed in 6% of patients

Objective: To present efficacy and safety data from the pivotal phase II KarMMa trial of ide-cel in RR MM*


Ide-cel CAR T-Cell Design

- Autologous T cells transduced with a lentiviral vector encoding a CAR specific for human BCMA
- Targeting domain: anti-BCMA
- Co-stimulatory domain: 4-1BB
- T-cell activation domain: CD3ζ

BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; CRR, complete response rate; IMiD, immunomodulatory drug; ORR, overall response rate; PFS, progression-free survival; RR MM, relapsed and refractory multiple myeloma; TM, transmembrane. *Data presented are updated from the protocol-specified primary analysis dataset.

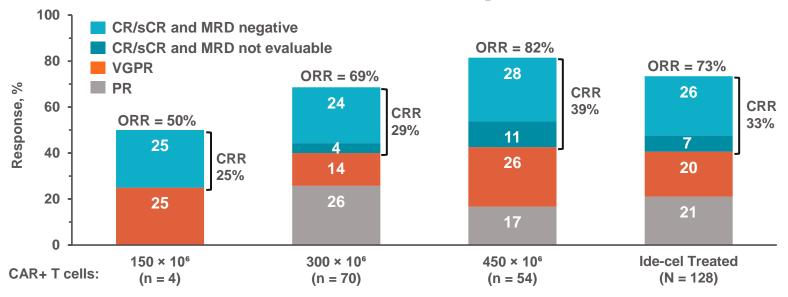
1. Braggio E, et al. Cancer Cell. 2015;28:678-.e1. 2. Rasche L, et al. Cancer Treat Rev. 2017;55:190-199. 3. Nijhof IS, et al. Drugs. 2018;78:19-37. 4. Gandhi UH. Leukemia. 2019;33:2266-2275. 5. Raje NS, et al. N Engl J Med. 2019;380:1726-1737.

Phase II Pivotal KarMMa Study

*Defined as documented disease progression during or within 60 d from last dose of prior antimyeloma regimen. [†]Patients were required to be hospitalized for 14 d post-infusion. Ide-cel retreatment was allowed at disease progression for best response of at least stable disease. [‡]By next-generation sequencing.

CRR, complete response ratio; Cy, cyclophosphamide; DOR, duration of response; Flu, fludarabine; GEP in BM, gene expression profile in bone marrow; HEOR, health economics and outcomes research; IMiD, immunomodulatory imide drugs; IMWG, International Myeloma Working Group; MRD, minimal residual disease; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PK, pharmacokinetics; QOL, quality of life.

Baseline Demographics and Clinical Characteristics

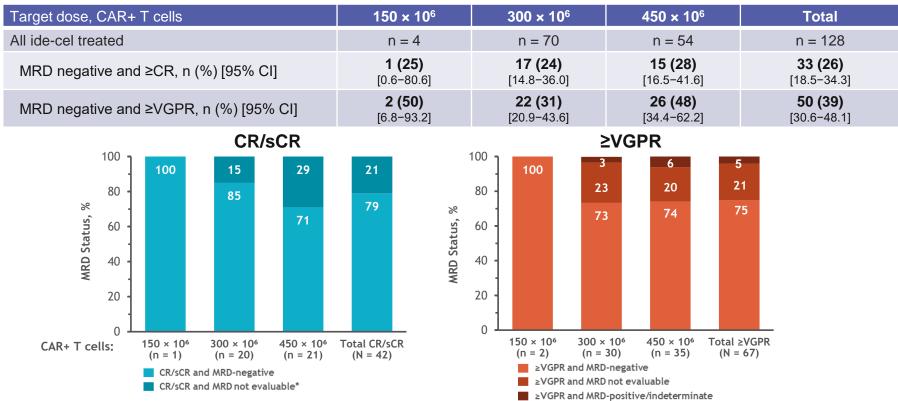

Characteristics			Ide-cel Treated (N = 128)
Age, median (range), y			61 (33-78)
Male, %			59
ECOG PS, %		0 1 2	45 53 2
R-ISS Stage,* %		 	11 70 16
High-risk cytogenetics [del(17p), t(4;14), t(14;16)],† %		35
High tumor burden (≥50% BMPCs), %			51
Tumor BCMA expression (≥50% BCMA+)	,‡ %		85
Extramedullary disease, %			39
Time since initial diagnosis, median (range	е), у		6 (1-18)
No. of prior antimyeloma regimens, media	n (range)		6 (3-16)
Prior autologous SCT, %		1 >1	94 34
Any bridging therapies for MM, %			88
Refractory status, %	Anti-CI	D38 Ab refractory Triple refractory	94 84

- Patients were heavily pretreated, refractory to last line per IMWG criteria, and mostly refractory to all 3 major MM drug classes
- The majority had high tumor burden and more than one-third had extramedullary disease and high-risk cytogenetics
- Tumor BCMA expression identified by IHC in all patients
- Most patients (88%) received bridging therapy during CAR T-cell manufacturing
 - Only 5% of patients responded (5 PR, 1 VGPR) to bridging therapy

Data cutoff: 14 Jan 2020. *R-ISS stage was assessed at enrollment; unknown for 3 patients. †Baseline cytogenetics not evaluable/missing for 17 patients; 45 patients (35%) had 1q amp abnormality. ‡No minimum tumor BCMA expression required for study entry.

Ab, antibody; BCMA, B-cell maturation antigen; BMPC, bone marrow plasma cells; ECOG PS, Eastern Cooperative Oncology Group performance status; IMWG, International Myeloma Working Group; MM, multiple myeloma; PR, partial response; R-ISS, revised International Staging System; SCT, stem cell transplant; VGPR, very good PR.

Best Overall Response

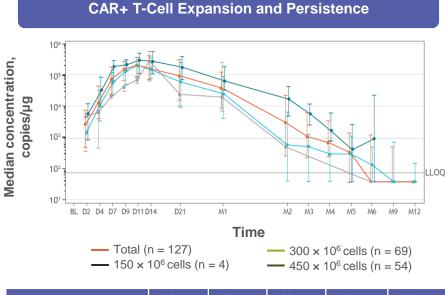


- Primary (ORR >50%) and key secondary (CRR >10%) endpoints met in the ide-cel-treated population
 - ORR of 73% (95% CI, 65.8-81.1; P <.0001*)
 - CRR (CR/sCR) of 33% (95% CI, 24.7-40.9; P <.0001)
- Median time to first response of 1.0 mo (range, 0.5–8.8); median time to CR of 2.8 mo (range, 1.0–11.8)
- Median follow-up of 13.3 mo across target dose levels

Data cutoff: 14 Jan 2020. MRD negative defined as <10⁻⁵ nucleated cells by next-generation sequencing. Only MRD values within 3 mo of achieving CR/sCR until progression/death (exclusive) were considered. Values may not add up due to rounding. **P* value at the primary data cutoff with same ORR and 95% CI.

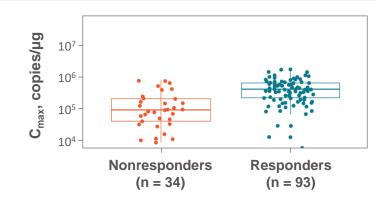
CR/sCR, complete response/stringent CR; CRR, CR rate; MRD, minimal residual disease; ORR, overall response rate (≥PR); PR, partial response; VGPR, very good PR.

MRD Negativity


Data cutoff: 14 Jan 2020. MRD negative defined as <10⁻⁵ nucleated cells by next-generation sequencing. Only MRD values within 3 mo of achieving CR/sCR until progression/death (exclusive) were considered. Values may not add up due to rounding. *Of 42 patients with ≥CR, 8 were not evaluable for MRD and 1 had values outside the 3-mo window prior to CR/sCR. CR/sCR, complete response/stringent CR; MRD, minimal residual disease; VGPR, very good partial response.

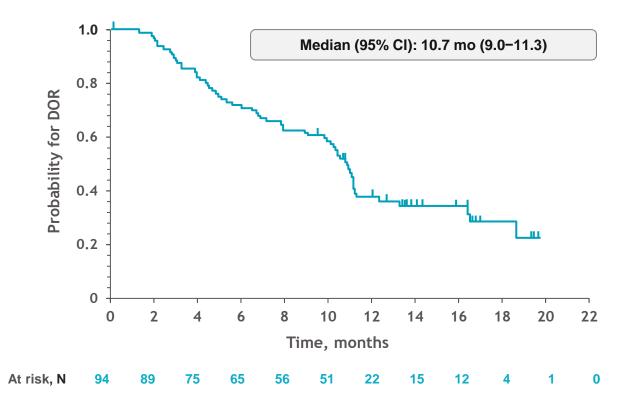
Clinically Meaningful Efficacy (ORR) Observed Across Subgroups

Subgroup		Ν	ORR, % (95% CI)
	<65	83	
Age group, years	≥65	45	
Sex	Male	76	· · · · · · · · · · · · · · · · · · ·
Sex	Female	52	
Ide ool terrest doop level	150 × 10 ⁶	4	
lde-cel target dose level, CAR+ T cells	300×10^{6}	70	
	450 × 10 ⁶	54	
P-ISS stage at enrollment	l or ll	104	
R-ISS stage at enrollment	III	21	
High-risk cytogenetics del(17p),	Yes	45	
t(4;14), t(14;16)	No	66	
Tumor burden at baseline,	≥50%	65	
BMPCs, %	<50%	57	i
Tumor BCMA expression	≥50%	109	
Tullior BCMA expression	<50%	3	
Extramedullary disease	Yes	50	
	No	78	
Triple refractory*	Yes	108	
Thple reliaciony	No	20	
Penta-refractory [†]	Yes	33	
	No	95	
Bridging therapy	Yes	112	
Bridging therapy	No	16	i ————————————————————————————————————
			0 10 20 30 40 50 60 70 80 90 100

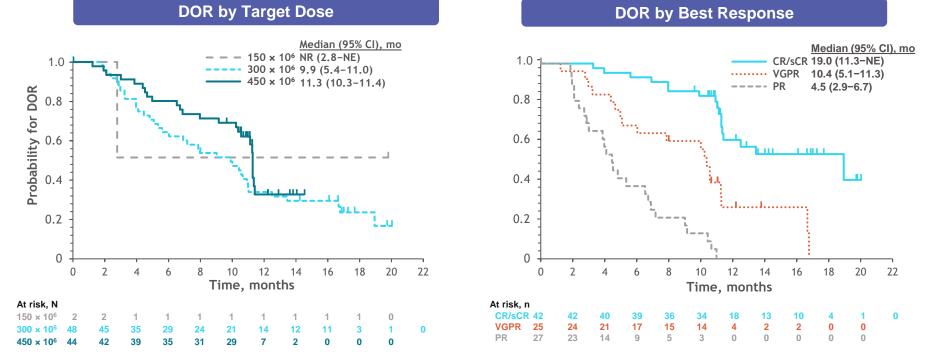

Data cutoff: 14 Jan 2020. *Defined as refractory to an IMiD agent, PI, and CD-38 antibody. †Defined as refractory to 2 IMiD agents, 2 PIs, and 1 anti-CD38 antibody. BCMA, B-cell maturation antigen; BMPC, bone marrow plasma cell; R-ISS, revised International Staging System.

CAR+ T-Cell Expansion, Persistence, and Peak Exposure

	Mo 1	Mo 3	Mo 6	Mo 9	Mo 12
Evaluable patients, n	118	100	49	27	11
Patients with detectable vector, n (%)	117 (99)	75 (75)	29 (59)	10 (37)	4 (36)

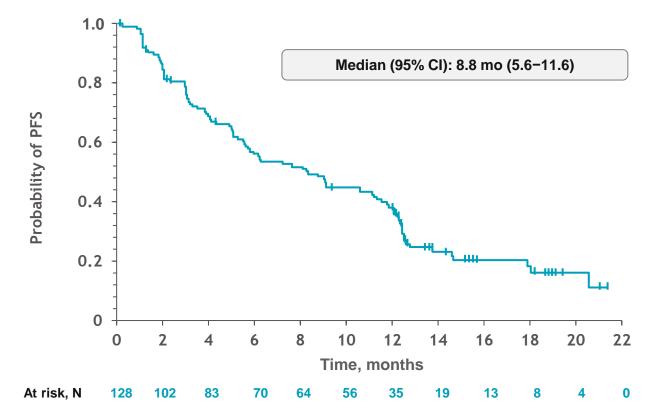

Peak Vector Copies in Responders (≥PR) vs Nonresponders (<PR)

- Median peak CAR+ T-cell expansion was at 11 d
- Median expansion increased at higher target doses with overlapping profiles
- Peak exposure higher in responders than nonresponders
- Durable persistence was observed up to 1 y

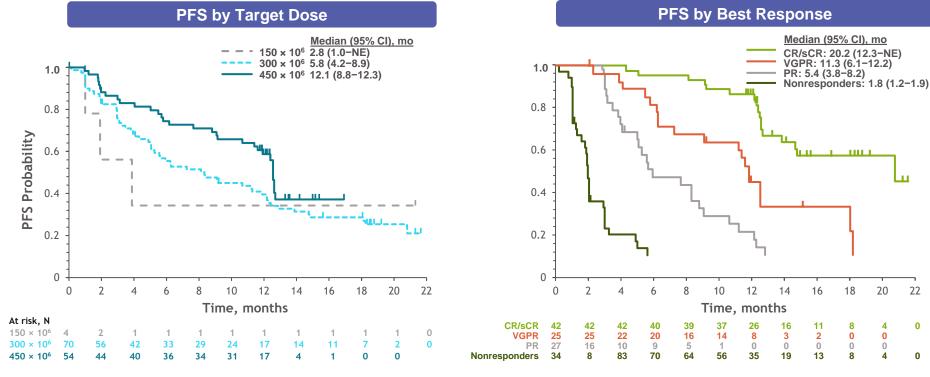

Data cutoff: 19 April 2019. Pharmacokinetic (PK) analysis population (N = 127). One patient died on day 4 and had no evaluable PK samples and was therefore excluded. Error bars represent interquartile range. BL, baseline; C_{max}, maximum concentration; LLOQ, lower limit of quantitation; M, month.

Duration of Response

Data cutoff: 14 Jan 2020. DOR is measured from the start of first partial response or better. DOR, duration of response.


Duration of Response by Target Dose and Best Response

- Durable responses were observed across all target doses; median DOR of 11.3 mo at 450 × 10⁶ CAR+ T cells
- DOR increased with depth of response; median DOR of 19 mo in patients achieving CR/sCR


Data cutoff: 14 Jan 2020. CR/sCR, complete response/stringent CR; DOR, duration of response; NE, not estimable; NR, not reached; PR, partial response; VGPR, very good PR.

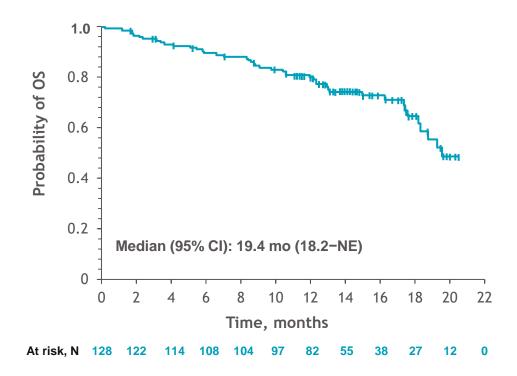
Progression-Free Survival

Data cutoff: 14 Jan 2020. PFS, progression-free survival.

Progression-Free Survival

•

 PFS increased with higher target dose; median PFS was 12 mo at 450 × 10⁶ CAR+ T cells


Data cutoff: 14 Jan 2020. NE, not estimable; PFS, progression-free survival.

PFS increased by depth of response; median PFS was

20 mo in patients with CR/sCR

Overall Survival

- 78% of all ide-cel-treated patients were event free at 12 mo
- Survival data are immature with 66% of patients censored overall; 72% at target dose of 450 × 10⁶ CAR+ T cells

Data cutoff: 14 Jan 2020. NE, not estimable; OS, overall survival.

Incidence and Management of CRS

Target Dose, × 10 ⁶ CAR+ T Cells	150 (n = 4)	300 (n = 70)	450 (n = 54)	lde-cel Treated (N = 128)
≥1 CRS event, n (%)	2 (50)	53 (76)	52 (96)	107 (84)
Max. grade (Lee criteria)* 1/2 3 4 5	2 (50) 0 0 0	49 (70) 2 (3) 1 (1) 1 (1)	49 (91) 3 (6) 0 0	100 (78) 5 (4) 1 (<1) 1 (<1)
Median onset, d (range)	7 (2-12)	2 (1-12)	1 (1-10)	1 (1-12)
Median duration, d (range)	5 (3-7)	4 (2-28)	7 (1-63)	5 (1-63)
Tocilizumab, n (%)	1 (25)	30 (43)	36 (67)	67 (52)
Corticosteroids, n (%)	0	7 (10)	12 (22)	19 (15)

- CRS frequency increased with dose, but mostly low-grade
- ≤6% grade 3 or higher CRS events at all target doses, including one grade 5 event
- CRS treated with corticosteroids was infrequent (≤22%) at all target doses

CRS, cytokine release syndrome; CTCAE, Common Terminology Criteria for Adverse Events; NA, not applicable; NCI, National Cancer Institute.

Data cutoff: 14 Jan 2020. Siltuximab was used to manage CRS in 1 patient who was treated with 300 × 10⁶ CAR+ T cells. Anakinra was used to manage CRS in 1 patient who was treated with 300 × 10⁶ CAR+ T cells. Anakinra was used to manage CRS in 1 patient who was treated with 300 × 10⁶ CAR+ T cells. Anakinra was used to manage CRS in 1 patient who was treated with 300 × 10⁶ CAR+ T cells.

Incidence and Management of Neurotoxicity

Target Dose, × 10 ⁶ CAR+ T Cells	150 (n = 4)	300 (n = 70)	450 (n = 54)	lde-cel Treated (N = 128)
≥1 NT event, n (%)	0	12 (17)	11 (20)	23 (18)
Max. grade (CTCAE)* 1 2 3	0 0 0	7 (10) 4 (6) 1 (1)	5 (9) 3 (6) 3 (6)	12 (9) 7 (5) 4 (3)
Median onset, d (range)	NA	3 (1-10)	2 (1-5)	2 (1-10)
Median duration, d (range)	NA	3 (2-26)	5 (1-22)	3 (1-26)
Tocilizumab, n (%)	NA	0	3 (6)	3 (2)
Corticosteroids, n (%)	NA	2 (3)	8 (15)	10 (8)

- NT mostly low-grade and was similar across target doses
- Incidence of grade 3 NT events was uncommon (≤6%) at all target doses; no grade 4 or 5 events
- NT managed with corticosteroids was infrequent (≤15%) at all target doses

Data cutoff: 14 Jan 2020. CTCAE, Common Terminology Criteria for Adverse Events; NA, not applicable; NCI, National Cancer Institute; NT, neurotoxicity (investigator-identified). *Investigator-identified NT events were graded according to the NCI CTCAE v4.03.

Most Common Adverse Events

A = * n (0/)	Ide-cel Treate	ed (N = 128)
AE,* n (%)	Any grade	Grade ≥3
Hematologic		
Neutropenia	117 (91)	114 (89)
Anemia	89 (70)	77 (60)
Thrombocytopenia	81 (63)	67 (52)
Leukopenia	54 (42)	50 (39)
Lymphopenia	35 (27)	34 (27)
Gastrointestinal		
Diarrhea	45 (35)	2 (2)
Nausea	37 (29)	0
Other		
Hypokalemia	45 (35)	3 (2)
Fatigue	43 (34)	2 (2)
Hypophosphatemia	38 (30)	20 (16)
Hypocalcemia	34 (27)	10 (8)
Pyrexia	32 (25)	3 (2)
Hypomagnesemia	30 (23)	0
Decreased appetite	27 (21)	1 (<1)
Headache	27 (21)	1 (<1)
Hypogammaglobulinemia	27 (21)	1 (<1)
Cough	26 (20)	0
CRS [†]	107 (84)	7 (5)

- Cytopenias were common; not dose related
- Median time to recovery of grade ≥3 neutropenia and thrombocytopenia was 2 mo (95% CI, 1.9-2.1) and 3 mo (95% CI, 2.1-5.5), respectively
- Delayed recovery (>1 mo) of grade ≥3 neutropenia in 41% of patients and thrombocytopenia in 48%[‡]
- Infections (including bacterial, viral, fungal) were common (69%); not dose related
- 5 deaths (4%) within 8 wk of ide-cel infusion
 - 2 following MM progression
 - 3 from AEs (CRS, aspergillus pneumonia, GI hemorrhage)
- 1 additional death from AE (CMV pneumonia) within 6 mo, in the absence of MM progression

Data cutoff: 14 Jan 2020. AE, adverse event; CMV, cytomegalovirus; CRS, cytokine release syndrome; GI, gastrointestinal.

*Events reported in 20% or more patients. [†]Clustered term including the preferred term; uniformly graded per Lee DW, et al. Includes 2 patient with grade 5 CRS event was observed. [‡]Includes patients with grade 3/4 cytopenia at 1 mo post-infusion.

Conclusions

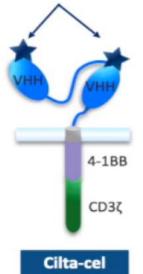
- Ide-cel demonstrated frequent, deep, and durable responses in heavily pretreated, highly refractory RR MM patients in the pivotal KarMMa trial
 - Both primary and key secondary endpoints were met: ORR of 73% and CRR of 33%
 - Median DOR was 10.7 mo and median PFS was 8.8 mo in all ide-cel-treated patients
 - Median DOR was 19.0 mo and median PFS was 20.2 mo in patients achieving CR/sCR
 - Median OS was 19.4 mo among all ide-cel-treated patients
- Efficacy was highest at the target dose of 450×10^6 CAR+ T cells
 - ORR of 82% including 39% CRR; median DOR and PFS of 11.3 mo and 12.1 mo, respectively
- Ide-cel was tolerable across the dose range
 - The frequency of grade \geq 3 CRS or investigator-identified NT \leq 6% at target dose of 450 × 10⁶ CAR+ T cells
- Results support a favorable benefit-risk profile for ide-cel across the target dose range of 150 to 450 × 10⁶ CAR+ T cells
- KarMMa efficacy results were compared with real-world treatment outcomes in a similar triple-class-exposed RR MM population; multiple efficacy endpoints were significantly improved with ide-cel (Jagannath S, et al. ASCO 2020. Abstract 8525)
- Ide-cel provides an attractive option for treatment of triple-class—exposed (to IMiD agents, PIs, and anti-CD38 antibodies) RR MM

EFFICACY AND SAFETY OF THE BCMA-DIRECTED CAR T-CELL THERAPY, CILTACABTAGENE AUTOLEUCEL, IN PATIENTS WITH PROGRESSIVE MULTIPLE MYELOMA AFTER 1–3 PRIOR LINES OF THERAPY: INITIAL RESULTS FROM CARTITUDE-2

Mounzer Agha^{1,*}, Adam Cohen², Deepu Madduri³, Yael C Cohen⁴, Michel Delforge⁵, Jens Hillengass⁶, Hartmut Goldschmidt⁷, Katja Weisel⁸, Marc-Steffen Raab^{9,10}, Christoph Scheid¹¹, Jordan M Schecter¹², Kevin C De Braganca¹², Helen Varsos¹², Liwei Wang¹², Martin Vogel¹³, Marlene J Carrasco-Alfonso¹⁴, Muhammad Akram¹⁴, Xiaoling Wu¹⁴, Tonia Nesheiwat¹⁴, Hermann Einsele¹⁵

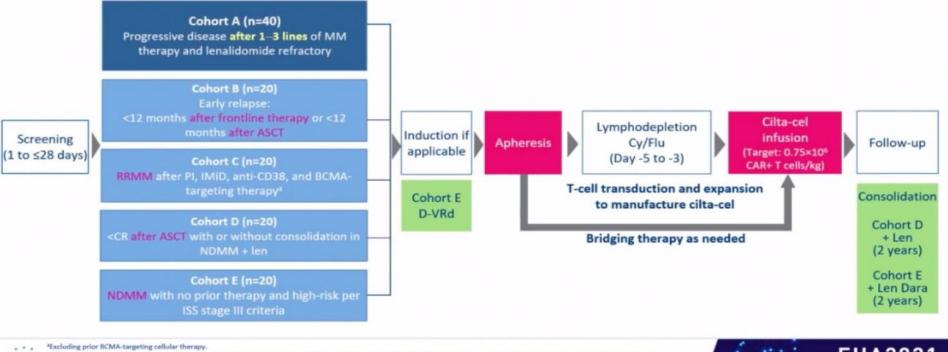
¹UPMC Hillman Cancer Center, Pittsburgh, PA, USA; ²Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ³Mount Sinai Medical Center, New York, NY, USA; ⁴Tel-Aviv Sourasky (Ichilov) Medical Center, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; ⁵Universitaire Ziekenhuizen Leuven, Leuven, Belgium; ⁶Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; ⁷University Hospital Heidelberg, Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg, Germany; ⁸University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ⁹University Hospital Heidelberg, Heidelberg, Germany; ¹⁰Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany; ¹¹University of Cologne, Cologne, Germany; ¹²Janssen R&D, Raritan, NJ, USA; ¹³Janssen Global Services, LLC, Raritan, NJ, USA; ¹⁴Legend Biotech USA, Inc, Piscataway, NJ, USA; ¹⁵Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik II, Würzburg, Germany

An electronic version of the poster can be viewed by scanning the QR code or accessing this link: https://oncologysciencehub.com/EHA2021/cilta-cel/Agha. The QR code is intended to provide scientific information for individual reference. The PDF should not be altered or reproduced in any way.



CARTITUDE-2: Introduction

- Treatment options are limited for patients who have progressive MM after 1–3 lines of treatment and are refractory to lenalidomide and/or proteasome inhibitors^{1,2}
 - A recent study with daratumumab + Pd and Pd group alone in lenalidomide exposed patients (lenalidomide refractory: 80%) reported a reduced risk in disease progression with a median PFS of 12.4 and 6.9 months, respectively³
 - There is an unmet need for novel and durable treatment options in this patient population
- Cilta-cel is a CAR T-cell therapy expressing 2 BCMA-targeting, single-domain antibodies designed to confer avidity
- In CARTITUDE-2, a multicohort phase 2 study, cilta-cel is being evaluated in patients with MM in earlier-line settings than in CARTITUDE-1⁴
- Here, we present initial results from patients (n=20) in Cohort A of CARTITUDE-2 who had progressive MM after 1–3 prior lines of therapy and were refractory to lenalidomide (median follow-up: 5.8 months)


BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; cilta-cel, ciltacabtagene autoleucel; MM, multiple myeloma; Pd, pomalidomide and dexamethasone; PF5, progression-free survival; VHH, variable heavy chain.

1. Richardson PG, et al. Lancet Once/ 2019;20:781-94. 2. Moreau P, et al. Lewkemia 2017;31:115-22. 3. Dimopoulos M, et al. Blood 2020;136(Suppl 1):5-6. 4. CARTITUDE-1 phase 1b/2 efficacy and safety results will be presented at EHA Virtual Congress 2021 (Abstract EP972 available by scanning the QR code on this slide).

CARTITUDE-2: Phase 2 Multi-Cohort Study in Various MM Settings

ASCT, autologous stem cell transplant; BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; cilta-cel, ciltacabtagene autoleucel; CR, complete response; Cy, cyclophosphamide; Dara, daratumumab; D-VRd, daratumumab, bortezomib, lenalidomide, and dexamethasone; Flu, fludarabine; IMID, immunomodulatory drug; IMWG, International Myeloma Working Group;

iSS, International Staging System; Len, lenalidomide; MM, multiple myeloma; NDMM, newly diagnosed multiple myeloma; PI, proteasome inhibitor; RRMM, relapsed/refractory multiple myeloma.

CARTITUDE-2 Cohort A: Study Design

Primary Objectives

 MRD 10⁻⁵ negativity as assessed by next-generation sequencing^a

Secondary Objectives

- ORR; per IMWG response criteria
- Duration of response
- Time and duration of MRD negativity
- Incidence and severity of AEs^{b,c}

Key Eligibility Criteria

- Progressive MM after 1–3 prior lines of therapy
 - Including a PI and an IMiD
- Lenalidomide refractory
- No prior exposure to BCMA-targeting agents

*ClonoSEQ, Adaptive Biotechnologies. *Assessed according to the Common Terminology Criteria for AEs version 5.0. *CRS and ICANS were graded according to the American Society for Transplantation and Cellular Therapy criteria.

AE, adverse event; BCMA, B-cell maturation antigen; cilta-cel, cilta-cel

PD, pharmacodynamics; PI, proteasome inhibitor; PK, pharmacokinetics.

CARTITUDE-2: Baseline Characteristics

Characteristic	N=20	Characteristic	N=20
Male, n (%)	13 (65)	Previous stem-cell transplantation, n (%)	
Years since diagnosis, median (range)	3.5 (0.7-8.0)	Autologous	17 (85)
Age, years, median (range)	60 (38-75)	Allogeneic	0
Extramedullary plasmacytomas ≥1, n (%)	3 (15)	Triple-class exposed, c n (%)	13 (65)
Bone-marrow plasma cells ^a ≥60%, n (%)	3 (15)	Triple-class refractory, c n (%)	8 (40)
Prior lines of therapy, median (range)	2 (1-3)	Penta-drug exposed, ^d n (%)	4 (20)
Number of prior lines of therapy, n (%)		Penta-drug refractory, ^d n (%)	1 (5)
<3 prior lines	12 (60)	Refractory status, n (%)	
3 prior lines	8 (40)	Bortezomib	8 (40)
High-risk cytogenetic profile, n (%)	7 (35)⊳	Carfilzomib	2 (10)
del17p	3 (15)	Pomalidomide	7 (35)
t(14;16)	5 (25)	Daratumumab	12 (60)
t(4;14)	0	Refractory to last line of therapy, n (%)	19 (95)

· All patients were refractory to lenalidomide

- · All patients were exposed to a PI, an IMiD, and dexamethasone
- 95% were exposed to alkylating agents and 65% to daratumumab

Maximum value from bone marrow biopsy and bone marrow aspirate is selected if both results are available. 9One patient had both del17p and t[14:16].

121 Pl, 21 IMiD, and 1 anti-CD38 antibody. 422 Pis, 22 IMiDs, and 1 anti-CD38 antibody.

CARTITUDE-2: Overall Response Rate and MRD Negativity

- Median time to first response: 1.0 month (range, 0.7–3.3)
- Median time to CR or better: 1.9 months (range, 0.9–5.1)
- All patients (n=4) with MRD-evaluable^b samples at the 10⁻⁵ threshold were MRD negative at data cut-off

Data cut-off date; Jan 2021. *Patient who did not respond had stable disease. *MRD was assessed in evaluable samples (ie, patients with identifiable clone at baseline and sufficient cells for

testing at 10⁻⁸ threshold in post treatment samples) by next-generation sequencing (clonoSEQ, Adaptive Biotechnologies) in all treated patients. CR, complete response; MRD, minimal residual disease; ORR, overall response rate; PR, partial response; sCR, stringent complete response; VGPR, very good partial response.

. . .

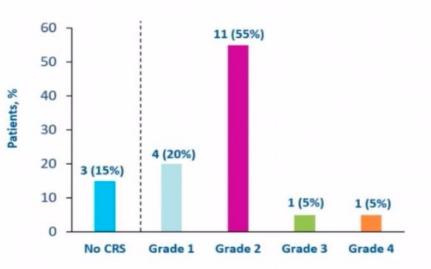
CARTITUDE-2: Safety

it is a second secon	N=	20
Nonhaematologic AEs ≥20%, n (%)	Any grade	Grade 3/4
Metabolism and nutrition disorders		
Hypokalaemia	8 (40)	0
Hypocalcaemia	7 (35)	3 (15)
Hypophosphataemia	7 (35)	3 (15)
Hypomagnesaemia	6 (30)	0
Decreased appetite	5 (25)	3 (15)
Gastrointestinal		
Diarrhoea	9 (45)	3 (15)
Nausea	5 (25)	0
Constipation	4 (20)	0
Vomiting	4 (20)	0
Other		
Fatigue	9 (45)	1 (5)
Back pain	5 (25)	2 (10)
Pyrexia	5 (25)	0
Arthralgia	4 (20)	0
Renal impairment	4 (20)	0

	N=20		
Haematologic AEs ≥20%, n (%)	Any grade	Grade 3/4	
Neutropaenia	19 (95)	18 (90)	
Thrombocytopaenia	16 (80)	7 (35)	
Anaemia	13 (65)	8 (40)	
Lymphopaenia	12 (60)	11 (55)	
Leukopaenia	11 (55)	11 (55)	

- Incidence of prolonged Grade 3/4 cytopaenias beyond Day 60:
 - Neutropaenia: 25%
 - Thrombocytopaenia: 0%
 - Lymphopaenia: 45%

. . . AE, adverse event.



CARTITUDE-2: Safety

CRS	N=20
Patients with a CRS event, n (%)	17 (85)
Time to onset, days, median (range)	7 (5–9)
Duration, days, median (range)	3.5 (2-11)
Supportive measures, ^a n (%)	
Tocilizumab	14 (70)
Corticosteroids	6 (30)
IV fluids	6 (30)
Oxygen	4 (20)
Anakinra	1 (5)
Vasopressor	1 (5)
CRS resolved or recovered in 94% of patients	at the time of data cut-off
Neurotoxicity	N=20
ICANS, n (%)	3 (15)
Median time to onset, days (range)	8 (7-11)
Median duration, days (range)	2 (1-2)
All ICANS were grades No cases of movement and neuro	

Maximum CRS Grade (N=20)

 1 death occurred on Day 100 after infusion due to COVID-19, and was assessed as treatment-related by the investigator

Pincludes supportive measures to treat CRS events and symptoms. Data cut-off date: Jan 2021

AE, adverse event; CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity; IV, intravenous; TEAE, treatment-emergent adverse event.

Case Study

A 61-year-old previously healthy male is found to have symptomatic (hypercalcemia, anemia, lytic lesions) IgG kappa MM, R-ISS stage 3 (ISS3, normal LDH, del 17p in 65% PC). He is being treated in a community practice

- He received RVD induction followed by high-dose melphalan ASCT with lenalidomide and ixazomib maintenance. One-and-a-half years later he has serologic PD and new lytic lesions
- He received daratumumab-carfilzomib-dexamethasone and after 12 months
 has serologic progression
- He received pomalidomide, cyclophosphamide, and dexamethasone and now 6 months later is progressing

Antimyeloma Agents

Steroids	Conventional Chemo	CELMoDs	Proteasome Inhibitors	HDAC Inhibitor	Immunologic Approaches	XPO Inhibitor
Prednisone	X Melphalan	Thalidomide	X Bortezomib	Panobinostat	X Daratumumab (anti-CD38)	Selinexor
Dexamethasone	Melflufen	X Lenalidomide	X Carfilzomib		Isatuximab (anti-CD38)	
	Cyclophosphamide	X Pomalidomide	X Ixazomib		Elotuzumab (anti-CS1)	
	Liposomal doxorubicin	Iberdomide			Belantamab (anti-BCMA + MMAF)	
	DCEP/D-PACE	CC-92480				
	METRO28					
	Carmustine					
	Bendamustine					
	Off Label					
		Ruxolitinib	Venetoclax			
			Nelfinavir			

Case Study (continued)

- CBC WBC 4.0/ANC 1.3/Hg 9.0/plt 85
- Chem CrCl 50, calcium normal
- MM M spike 0.4, FLC kappa 125 mg/L, BJP 50 mg/d
- PET-CT multifocal FDG avidity but without cortical damage
- What would you do now with this patient with penta-refractory MM?

Question 1

What would you do now with this patient with penta-refractory MM?

- 1. 96-hour infusional therapy (VDCEP/VDPACE)
- 2. Salvage transplant
- 3. Selinexor
- 4. Belantamab
- 5. Enroll in melflufen study
- 6. Enroll in iberdomide or CELMoD study
- 7. Enroll in BCMA-CAR T study
- 8. Enroll in BCMA–T-cell engager study
- 9. Other

Case Study (continued)

- CBC WBC 4.0/ANC 1.3/Hg 9.0/plt 85
- Chem CrCl 25, calcium normal
- MM M spike 0.4, FLC kappa 3000 mg/L, BJP 1500 mg/d
- PET-CT multifocal FDG avidity but without cortical damage

• What would you do now with this patient with penta-refractory MM where findings developed over 3–4 weeks?

Question 2

What would you do now with this patient with penta-refractory MM where findings developed over 3–4 weeks?

- 1. 96-hour infusional therapy (VDCEP/VDPACE)
- 2. Salvage transplant
- 3. Selinexor
- 4. Belantamab
- 5. Enroll in melflufen study
- 6. Enroll in iberdomide or CELMoD study
- 7. Enroll in BCMA-CAR T study
- 8. Enroll in BCMA–T-cell engager study
- 9. Other

Case Study (continued)

While receiving carfilzomib, the patient developed difficult-to-control HTN and concomitant CHF with finding of multivessel coronary artery disease. Currently on medical management with EF 35% and dyspnea on exertion; ECOG 2

- CBC WBC 4.0/ANC 1.3/Hg 9.0/plt 85
- Chem CrCl 50, calcium normal
- MM M spike 0.4, FLC kappa 125 mg/L, BJP 50 mg/d
- PET-CT multifocal FDG avidity but without cortical damage

• What would you do now with this patient with penta-refractory MM?

Question 3

What would you do now with this patient with penta-refractory MM?

- 1. 96-hour infusional therapy (VDCEP/VDPACE)
- 2. Salvage transplant
- 3. Selinexor
- 4. Belantamab
- 5. Enroll in melflufen study
- 6. Enroll in iberdomide or CELMoD study
- 7. Enroll in BCMA-CAR T study
- 8. Enroll in BCMA–T-cell engager study
- 9. Other

Case Study (continued)

- CBC WBC 4.0/ANC 1.3/Hg 9.0/plt 85
- Chem CrCl 50, calcium normal
- MM M spike 0.4, FLC kappa 125 mg/L, BJP 50 mg/d
- PET-CT multifocal FDG avidity but without cortical damage

 What would you do now with this patient with penta-refractory MM who is s/p fludarabine cyclophosphamide + anti-BCMA CAR T and has serologic and paramedullary disease progression on PET-CT within 5 months?

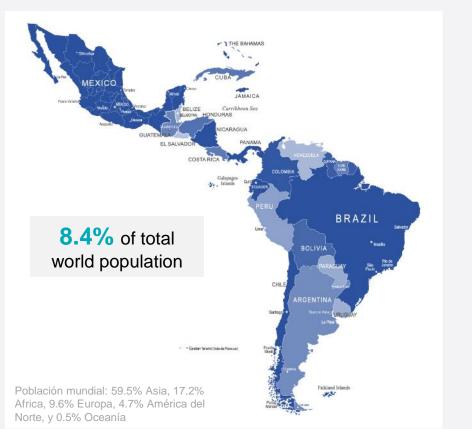
Question 4

What would you do now with this patient with penta-refractory MM who is s/p fludarabine cyclophosphamide + anti-BCMA CAR T and has serologic and paramedullary disease progression on PET-CT within 5 months?

- 1. 96-hour infusional therapy (VDCEP/VDPACE)
- 2. Salvage transplant
- 3. Selinexor
- 4. Belantamab
- 5. Enroll in melflufen study
- 6. Enroll in iberdomide or CELMoD study
- 7. Enroll in BCMA-CAR T study
- 8. Enroll in BCMA–T-cell engager study
- 9. Other

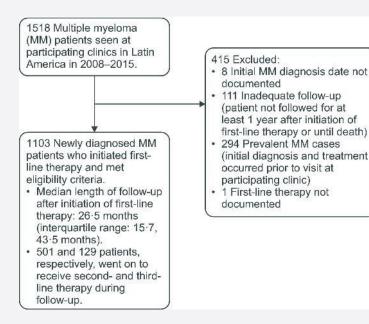
Patient Case Discussion: Newly Diagnosed and Relapsed/Refractory Multiple Myeloma

All Faculty


Treatment Challenges in Relapsed/Refractory MM in the Region

Natalia Schütz, MD, MS

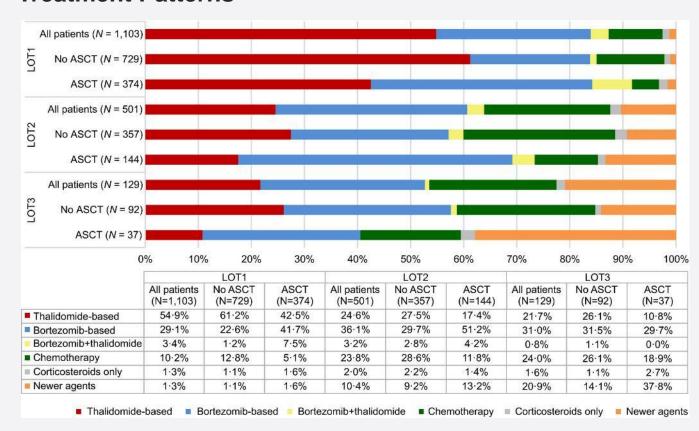
Latin America in Numbers



Global Multiple Myeloma Academy

Area	19,197,000 km² (7,412,000 sq mi)
Population	646,421,670 (2020)
Countries	20
Languages	Mainly: Spanish and Portuguese

RWE LATAM: HOLA Study Epidemiologic Data

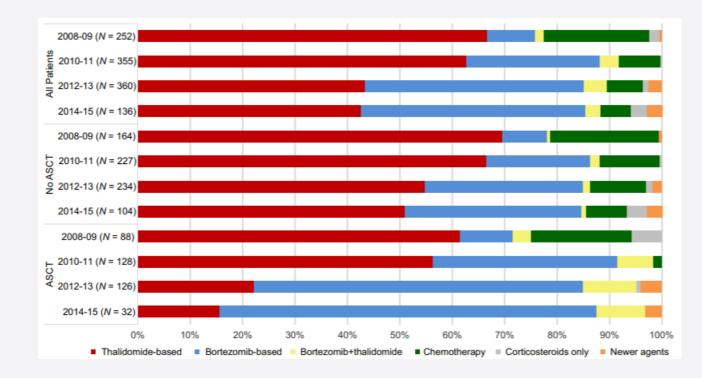

- > The study cohort included 1103 eligible patients with NDMM from 2008 to 2015, and longitudinal follow-up ≥1 year or until death
- > Median age at diagnosis was 61 years (IQR 53–69)
- > ISS staging
 - 15.4% stage I
 - 21.2% stage II
 - 31.5% stage III
 - 31.9% Not documented

> CRAB at diagnosis

- Bone disease 78.5%
- Anemia 72.7%
- Renal disease 27%
- Hypercalcemia 16.7%
- > For most patients (80%), cytogenetic testing was unavailable
- > Among the 221 patients with cytogenetic test results
 - 34 (15.4%) have high-risk cytogenetics (del[17p], t[4; 14], or t[14; 16])

RWE LATAM: HOLA Study Treatment Patterns

Only 29% of patients received bortezomib in first line.


Only 33.9% underwent ASCT.

Newer agents: lenalidomide and carfilzomib.

Tietsche de Moraes Hungria V, et al. *Br J Haematol.* 188 2020;188:383-393.

RWE LATAM: HOLA Study Time Trends

Over the course of the study period, it was shown that use of bortezomib in LOT1 increased markedly in recent years (2014–2015)

Global Multiple Myeloma Academy Newer agents: lenalidomide and carfilzomib. Tietsche de Moraes Hungria V, et al. *Br J Haematol.* 189 2020;188:383-393.

GELAMM Study Access to Tests and Treatments in LATAM

Table 4

Multiple

loma Academ

> Survey sent to 185 hematologists from 15 Latin American countries (2018)

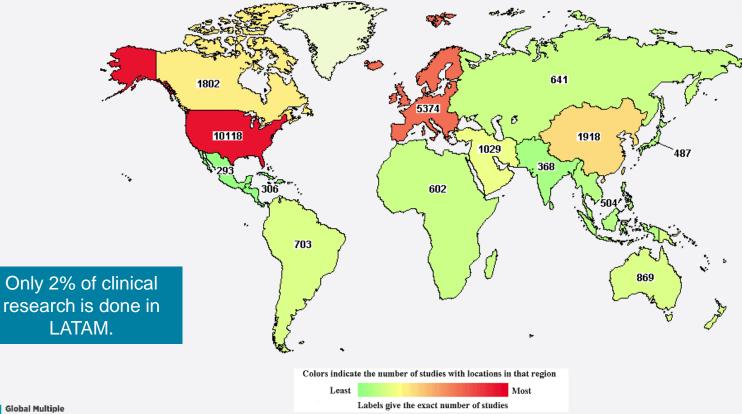
First option	Public system	Private system
Standard risk patients	(<i>n</i> = 66)	(<i>n</i> = 83)
VTD	15.1% (10)	12.65% (11)
CTD	34.8% (23)	2.53% (3)
CYBORD	21.2% (14)	36.70% (30)
TD	1.51% (1)	1.26% (1)
RVd	0	2.52% (2)
Rd	8.06% (5)	22.78% (18)
MPT	15.1% (10)	8.86% (7)
MP	1.51% (2)	3.79% (4)
VMP	1.51% (1)	8.86% (7)
High-risk patients	(n = 62)	(n = 84)
VTD	17.7% (11)	15.4% (13)
CTD	25.8% (16)	1.2% (1)
CYBORD	25.8% (16)	39.2% (33)
TD	0	2.4% (2)
RVd	4.8% (3)	17.8% (15)
Rd	1.6% (1)	7.14% (6)
VAD	3.2% (2)	0
KRd	0	1.2% (1)
MPT	4.8% (3)	1.2% (1)
VMP	16.1% (10)	14.2% (12)

First-line treatment choice for non-transplant-eligible MM

First option	Public system $(n = 67)$	Private system $(n = 85)$
Standard risk pa	tients	
VTD	26.8% (18)	37.6% (32)
CyBorD	23.8% (16)	44.7% (38)
RVd	0	4.7% (4)
KRD	0	0
VCTD	1.5% (1)	0
CTD	39% (26)	13% (11)
TD	7.46% (5)	0
High-risk patien	ts	
VTD	31.3% (21)	24.7% (21)
CyBorD	36% (24)	42.3% (36)
RVd	4.4% (3)	26% (22)
KRD	0	1.1% (1)
VCTD	1.5% (1)	0
CTD	21% (14)	0
TD	1	0
VDT-PACE	1.5% (1)	0
VAD	1.5% (1)	0

Table 3 First-line treatment choice for transplant-eligible MM patients

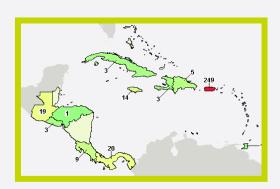
> 190 Riva E, et al. Ann Hematol. 2020;99:1025-1030.


Relapsed/Refractory MM Access to Combination Treatment in LATAM

	ARGENTINA		BRAZIL		COLOMBIA		MEXICO	
	Private	Public	Private	Public	Private	Public	Private	Public
DRd								
KRd								
IRd								
ERd								
DKd								
DVd								
DPd								
Kd*								

Even when new drugs are approved in most countries, access to combination therapy is limited, especially in the public setting.

Clinical Research in LATAM MAP of Hematology Registered Studies



Global Multiple Myeloma Academy

Source: ClinicalTrials.gov 2018.

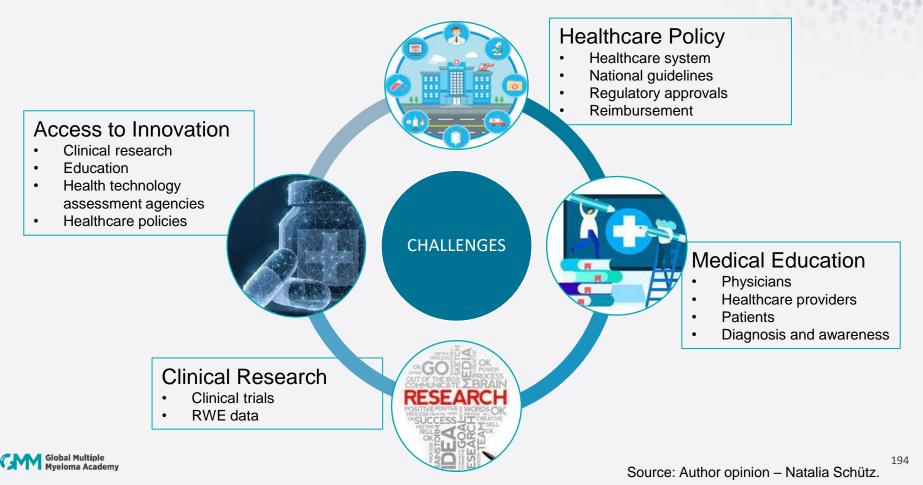
192

Clinical Research in LATAM MAP of Hematology Registered Studies

Most RCTs in LATAM are conducted in Brazil, Mexico, and Argentina.

Colors indicate the number of studies with locations in that region

Least Most



Source: ClinicalTrials.gov 2018.

193

Treatment Challenges in the Region

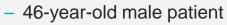
Short Discussion

All Faculty

Case 1: Patient with HRMM and early relapse after ASCT

Cristian M. Seehaus, MD Hospital Italiano de Buenos Aires, Buenos Aires, Argentina

HOSPITAL ITALIANO de Buenos Aires



Instituto Univers Hospital Italian

APTITUDE HEALTH

> Patient characteristics

- No past medical history
- ECOG performance status: 1

> Initial presentation and diagnosis

JAN 2019

 <u>Symptoms</u>: tumor in the left rib, asthenia, and weight loss

CBC and	chemistry	Protein test Urine analy		ysis	
Hemoglobin	7.9 g/dL	Serum immunofixation	IgA lambda	24-hour protein excretion	0.45 g/day
WBC	5.152/mm ³	M-spike	8.38 g/dL	Creatinine clearance	75 mL/min
Platelets	65.100/mm ³	IgA/IgG/IgM levels	8.800/260/5 mg/dL		IgA lambda with
Creatinine	1.09 mg/dL	FLC kappa/lambda	840/4.5 mg/dL (ratio 194)	Urine immunofixation	glomerular proteinuria
Calcium	10.5 mg/dL	Albumin/B2 microglobulin	2.6 g/dL/8.7 mg/L	Urine LC	36.9 mg/dL
Liver panel	Normal	LDH UI/L	Normal	Urine M-spike	Not available

- Bone marrow biopsy: 90% clonal plasma cells
- <u>Cytogenetics</u>: 48.XY.+add(1)(p13)×2.der(1;6)(p10;p10).+3.-8.-12.r(13)(p11.2q?).+15.+18.-20.-22.+mar1.+mar2[6]/46.XY[14]
- Imaging: PET/CT SCAN
- Hypermetabolic lytic lesions in the right and left acetabulum (SUV 12.8 and 4.2)
- Bone lesion with soft tissue infiltration in the second left rib (SUV 3.3)

> Risk assessment

– ISS 3; R-ISS 2

ST 1.1:10.4 mm

 Amplification of CKS1B gene at chromosome region 1q21 (1q+) in 21% of BM cells by FISH (PCs sorting was not performed)

> HRMM IgA lambda (ISS 3; R-ISS 2 with 1q+) Myeloma-defining events: anemia and lytic lesions

> Frontline therapy

JAN 2019

- Induction: patient received VRD. He achieved VGPR after 4 cycles
- Patient presented with AE: G3 PNP
- He underwent a tandem ASCT. He achieved sCR
- Maintenance: IRD (ixazomib 3 mg, lenalidomide 10 mg)

JAN 2020

 Relapse from CR: in a follow-up visit (2 months after starting maintenance), sIFx results tested positive

JUN 2020

- Progressive disease: serum protein electrophoresis showed an M-spike >0.5 g/dL

Biochemical relapse was confirmed, with progressive increase in M-spike

Relapsed/Refractory Setting

AUG 2020

- Bone marrow biopsy: 35% clonal plasma cells
- <u>Cytogenetics</u>: 47.XY.+1.add(1)(q21).-2.+3.add(5)(q22). add(6)(q23).-8.+9.-13.+15.-16.-20.[2]/46.XY[18]
- FISH t(4;14), t(14;16), del(17p): negative
- Imaging: PET/CT SCAN. New bone lesions (2)

Clinical relapse was confirmed

The patient had an early relapse (it occurred within 18 months of starting initial therapy and within 12 months from ASCT)

Blood test				
Hemoglobin	12.3 g/dL			
Creatinine	0.98 mg/dL			
Calcium	8.9 mg/dL			
M-spike	1.98 g/dL			
IgA level	1.320 mg/dL			
FLC kappa/lambda	332/5 mg/dL (ratio 59)			

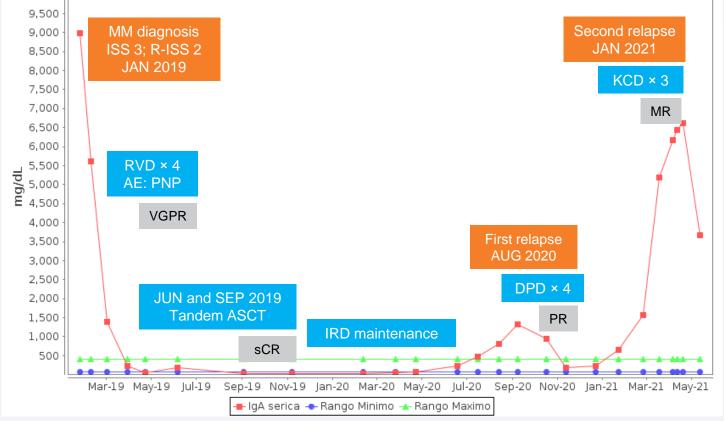
Audience ARS Question

- > In your daily clinical practice, how do you treat patients with HRMM relapsed/refractory to lenalidomide?
- a) Pomalidomide-based treatment regimens (PCD, PVD)
- b) Daratumumab-based treatment regimens (DVD, DPD, DD)
- c) Intensive chemotherapy regimens (PACE, DCEP, etc)
- d) Carfilzomib-based regimens (KCD, KD)
- e) Other regimens (re-exposure to the same induction regimen, CD, etc)

Relapsed/Refractory Setting

> Second-line therapy

SEP 2020


- DPD was started as second line
- He achieved partial response after 2 cycles
- He presented progressive disease with M-spike of 2.01 after 4 cycles

> Further therapies

MAR 2021

- He presented on PET/CT with positive uptake in second left rib with lytic lesion and Mspike of 4.98 g/dL
- He started a third line with KCD (20/36 mg/m², 300 mg/m², and 20 mg, respectively)
- He presented a 25% reduction in M-spike after 2 cycles (minimal response)

Resume

Global Multiple Myeloma Academy

Audience ARS Question

> In your daily clinical practice, how do you treat patients with penta-refractory MM?

- a) Anti-BCMA therapy (BiTEs, CAR T cells, belantamab mafodotin)
- b) Intensive chemotherapy regimens (PACE, DCEP, etc)
- c) Selinexor-based treatment regimens
- d) Other regimens
- e) Palliative care

Discussion: Case 1

Case Discussants: Cristian M. Seehaus, MD + Natalia Schütz, MD, MS

Moderator: Rafael Fonseca, MD

APTITUDE HEALTH

Case 2: High-Risk MM Patient

Ana Luiza Miranda Silva Dias, MD São Germano Clinic São Paulo, Brazil

See APTITUDE HEALTH

Clinical Case Study

58-year-old man referred to his orthopedist for back pain (March 2020)

Lab tests	BM biopsy	FISH test	Imaging
Hb: 7.7 g/dL Creatinine: 1.79 mg/dL Calcium: 9.5 mg/dL M-spike: 7.0 g/dL IgA Kappa IgA: 7,414 mg/dL B2 m: 6.5 mg/dL Albumin: 2.5 g/dL LDH 147 IU/L sFLC (k/l): 571	90% k-restricted clonal CD 138 plasma cells	FISH CD 138 isolated plasma cells t(4;14), 1q+ (63%), 17 del (25%)	Whole-body low- dose CT scan showed multiple lytic lesions and vertebral fractures (T7, T8, T9, L2, L3 and L4)

Clinical Case Study

- 58-year-old man
- No comorbidities
- Multiple myeloma IgA-kappa
- ISS 3
- R-ISS 3
- Fit

Clinical Case Treatment Proposal

Induction regimen Dara-VTd followed by ASCT

Clinical Case Treatment Performed

- 6 cycles of Dara-VTD since 26/Mar 2020 to 28/Oct 2020 (delayed because of COVID-19 pandemic)
- After induction: VGPR

Clinical Case Study

 In your clinical practice, which do you perform for high-risk transplant-eligible MM patients?

A) Single ASCTB) Double ASCT

?

Clinical Case Study

After double transplant, he achieved stringent complete response, MRD negativity

Lab tests	BM biopsy + MCF	FISH test (after	PET CT
(after 2 nd SCT)	(after 2 nd SCT)	2 nd SCT)	(after 2 nd SCT)
Hb: 12.4 g/dL Creatinine: 0.82 mg/dL Calcium: 10.5 mg/dL M-spike: absent IF negative IgA: 222 mg/dL B2 m: 2.5 mg/dL Albumin: 4.5 g/dL LDH 180 IU/L SFLC (k/I): 1.20	Clonal CD 138 plasma cells: negative MRD negative (MCF 10 ⁻⁶)	FISH CD 138 isolated plasma cells: negative	Negative

Clinical Case Outcome

• After induction >>> VGPR

 After double transplant SCR, MRD negative and PET CT negative

Clinical Case Study

- In your opinion, what is the best choice for this patient after the double ASCT?
 - A) 2 cycles of D-VTd follow by daratumumab until progression or toxicity
 - B) 2 cycles of D-VTd follow by daratumumab plus lenalidomide until progression or toxicity
 - C) 2 cycles of D-VTd follow by PI plus lenalidomide until progression or toxicity
 - D) Daratumumab, PI plus lenalidomide until progression or toxicity
 - E) Carfilzomib plus lenalidomide until progression or toxicity
 - F) Ixazomib plus lenalidomide until progression or toxicity

Multiple Myeloma

THANK YOU!!!

Discussion: Case 2

Case Discussants: Ana Luiza Miranda Silva Dias, MD + Vania Hungria, MD, PhD

Moderator: Rafael Fonseca, MD

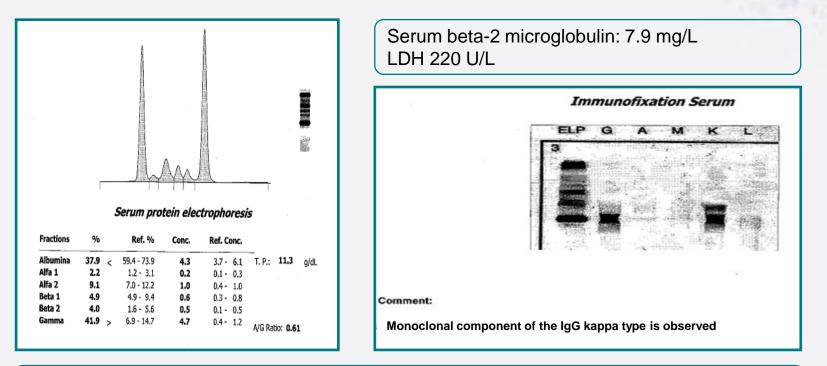
APTITUDE HEALTH

Case 3: Newly Diagnosed + R/R MM Patient

Didier Larios Sanjuan, MD National Cancer Institute of Colombia Bogotá, Colombia

- > Sociodemographic data
 - Woman
 - 54 years old
 - Born: Bogotá
 - Resident: Bogotá
 - Occupation: Bacteriologist
 - Civil status: Single
 - Evaluation date: September 2016

- > Clinical data
 - 54-year-old woman with diagnosis of IgG kappa ISS III multiple myeloma in September 2016
 - She presented with sternal chest pain of moderate intensity, not irradiated, of 1 year of evolution, receiving stepped analgesic treatment without clinical improvement
 - CRAB component (without hypercalcemia, without renal involvement, without anemia but with generalized lytic lesions on PET CT)



- > Clinical data
 - Important personal history: right nephrectomy in 2015 due to renal cell carcinoma, papillary variant type 2, unifocal, without vascular invasion. Hysterectomy for uterine myomatosis in 2012. Nontoxic and non-exposure history
 - Family history: mother died of colon carcinoma at 62 years of age
 - System review: no relevant data
 - Physical examination: in general, acceptable condition, with no pathologic findings during evaluation

PARACLINICS					
Blood count (Sept 10, 2016)	Hb 12.90 g/dL, Hto 39%, MCV 89 fL, leukocytes 6560 × mm ³ , neutrophils 3660 × mm ³ , lymphocytes 2010 × mm ³ , platelets 232,000 × mm ³				
Kidney function tests (Sept 10, 2016)	Creatinine 0.8 mg/dL Ureic nitrogen 12 mg/dL				
Liver function (Sept 10, 2016)	SGPT 19 U/L, SGOT 19.5 U/L, total bilirubin 0.2 mg/dL, alkaline phosphatase 80 U/L				
Electrolytes (Sept 10, 2016)	Sodium 135 mmol/L, potassium 4.2 mmol/L, chlorine 101 mmol/L, calcium 10.99 mg/dL				

September 21, 2016

Serum immunoglobulin levels: IgA 30 mg/dL, IgM 17 mg/d, IgG 5191 mg/dL

Quantification of free light chains in serum Kappa: 6277 mg/L Lambda: 5.70 mg/L Kappa/Lambda ratio: 1101

September 21, 2016

IMAGING STUDIES

POSITRON EMISSION TOMOGRAPHY (PET SCAN)

- Lytic hypermetabolic involvement in the sternal manubrium with SUV 8.0 with adjacent soft tissue component
- Hypermetabolism in the third right anterior costal arch with irregular trabeculation, metabolic increase SUV 5.0 in the tenth left lateral costal arch

BONE MARROW STUDIES

HISTOPATHOLOGY

Bone marrow with a cellularity variable between 30 and 60%, with interstitial and nodular infiltration (70%) by a neoplasm made up of plasma cells with a high nucleus-cytoplasm radius, some with prominent nucleoli of immature appearance; the findings are interpreted as infiltration by a plasma cell neoplasm

IMMUNOHISTOCHEMISTRY

Positivity CD38, CD138, MUM1, CD79a, CD56 with marked kappa predominance. Negative cytokeratin cocktail AE1–AE3, ACL–CD3, CD20, CD10, PAX8, lambda

FLOW CYTOMETRY

9.4% of abnormal plasma cells with expression of CD38, CD138, CD56, CD19 negative, CD45 negative, and monoclonality of cytoplasmic kappa light chains are detected

BONE MARROW STUDIES

KARYOTYPE

46, XX. In 30 metaphases analyzed

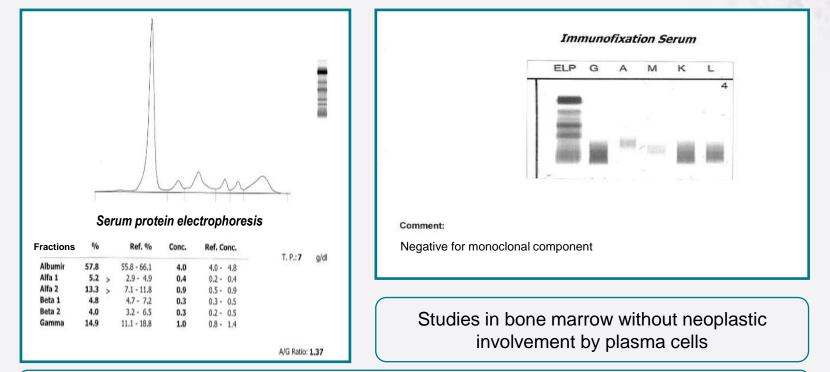
FISH

- Negative FISH for t(14;16), trisomy of the 14q32 region suggesting rearrangements of the IGH gene
- FISH negative for deletion or loss of p53 (17p)
- Positive FISH for t(4;14) translocation, fusion of the FGFR31-IGH genes with an atypical pattern
- Positive FISH for rearrangements involving the IGH gene (14q32) with an atypical pattern
- FISH positive for deletion of 13q
- FISH negative for t(11;14)

- > What would be the ideal treatment in this case?
 - A. VTd
 - B. VRd
 - C. VCD
 - D. Daratumumab + VRd
 - E. Daratumumab + VTd

ISS III (beta-2 microglobulin 7.9 mg/L)

First-line treatment: VRd (bortezomib, lenalidomide, dexamethasone): October 2016 to February 2017 Zoledronic acid Levofloxacin prophylaxis ~3 months Four cycles

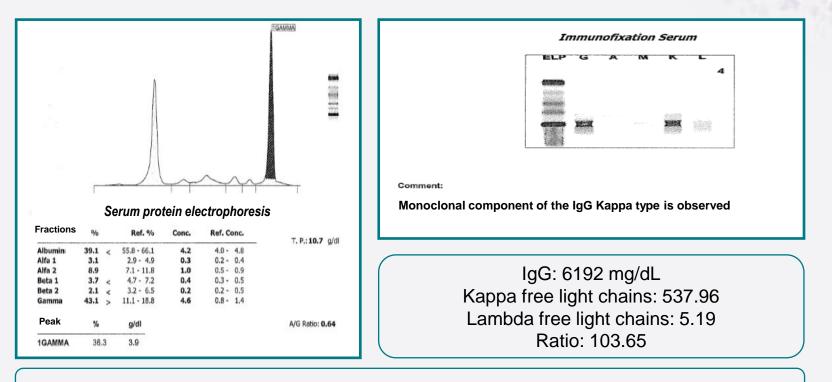

Response after the second cycle: partial response Post-fourth cycle response: very good partial response

Consolidation with autologous hematopoietic transplantation (April 2017) Response at day 100 post-HPT: very good partial response

Post-autologous hematopoietic transplant maintenance: lenalidomide (2 years: June 2017–**May 2019**)

Response in May 2019: stringent complete response and complete immunophenotypic response (no NGS or NGF available)

May 2019 - stringent complete response


Should maintenance be stopped?

- A. Yes
- B. No

Biochemical relapse (November 2020) 18 months after discontinuation of maintenance

Relapse: November 2020

BONE MARROW STUDIES

HISTOPATHOLOGY AND IMMUNOHISTOCHEMISTRY

Interstitial and small group (30%) infiltration by plasma cells, immunohistochemistry with positive plasma cells with CD38, CD138, and CD56, with kappa monotypicity, few lambda-positive cells

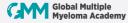
MYELOGRAM

Plasma cell neoplasia (19% of plasma cells)

BONE MARROW FLOW CYTOMETRY

4.2% of mature T-lymphocyte population and 0.33% of mature polyclonal B-lymphocyte population are observed; 7.2% of abnormal plasma cells are detected with expression of CD38, CD138, CD56, beta-2 microglobulin, cytoplasmic kappa light chain monoclonality, negative CD19, and negative CD45. There is 67.6% of mature myeloid population and 2.7% of monocytic population

NO CRAB


What would be the best salvage treatment?

- A. Daratumumab, lenalidomide, and dexamethasone
- B. Daratumumab, pomalidomide, and dexamethasone because lenalidomide-refractory disease
- C. Daratumumab, bortezomib, and dexamethasone because t(4;14) and bortezomib sensitive at the start of the disease
- D. Carfilzomib, daratumumab, pomalidomide, and dexamethasone

Current treatment

CASTOR protocol: daratumumab, bortezomib, dexamethasone (available) Currently the fourth cycle will begin Waiting for response measurement after 4 cycles

Points for Discussion

- > After 2 years of maintenance, would you be aligned with the need to assess MRD negativity to stop treatment?
- > Proposal of ideal treatment lines in this case (not in Latin America)?
- > Do you suggest other complementary studies for the monitoring and definition of the therapeutic line?
- > What would be the best treatment if this patient is refractory to the current treatment?
- Considering the duration of remission in the first transplant, could the second transplant be an option?

Discussion: Case 3

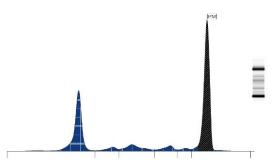
Case Discussants: Didier Larios San Juan, MD + Humberto Martinez Cordero, MD, MSc

Moderator: Rafael Fonseca, MD

APTITUDE HEALTH

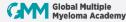
Case 4: Relapsed/Refractory MM Patient

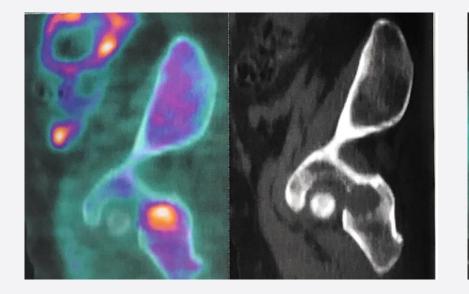
Sofía Sánchez, MD La Raza Medical Center, IMSS, Mexico City, Mexico

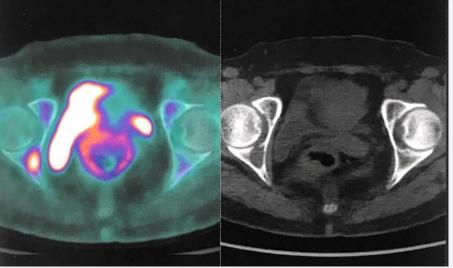

APTITUDE HEALTH

56 years old, female

Blood test					
Hemoglobin	6.4 g/dL				
Creatinine	3.42/1.42 mg/dL				
Albumin	3.01 g/dL				
lgG	6 g/L				
LDH	131 UI/L (max 250)				
B2-micro	5.3 mg/L				


Multiple myeloma IgG/kappa, R-ISS II


- M: 5 g/dL
 K/L: 457
- FISH: gain of 9, 11, 15/hyperdiploidy (the test was performed on selected clonal plasma cells (CD138+, CD38+, CD19+, CD56+)

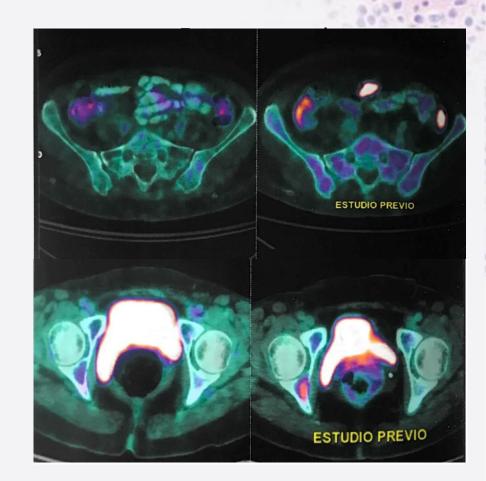


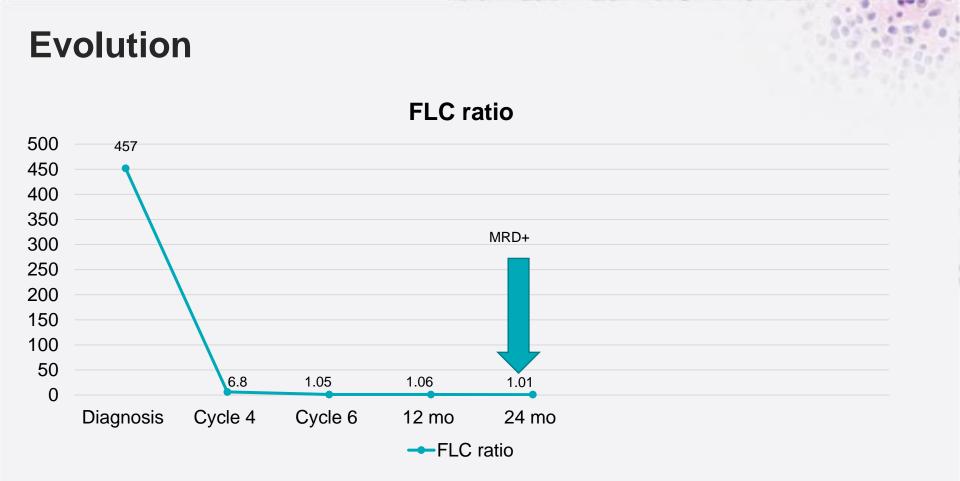

Fracciones	%	Ref. %	Conc.	Ref. Conc.
Albumina	30.7	55.8 - 66.1	3.5	3.5 - 4.8
Alfa 1	3.1 >	2.9 - 4.9	0.4	0.2 - 0.4
Alfa 2	7.5 >	7.1 - 11.8	0.9	0.5 - 0.9
Beta 1	4.1	4.7 - 7.2	0.5	0.3 - 0.5
Beta 2	1.8 <	3.2 - 6.5	0.2	0.2 - 0.5
Gamma	52.8 >	. 11.1 - 18.8	6.0	0.8 - 1.4
Picos	%	g/dL		
РМ	51.0	5.8	т	. P.: 11.43 g/dL

Pico monoclonal

Frontline Therapy

> D-VTD 4 cycles: VGPR


> ASCT-D/VTD (2)

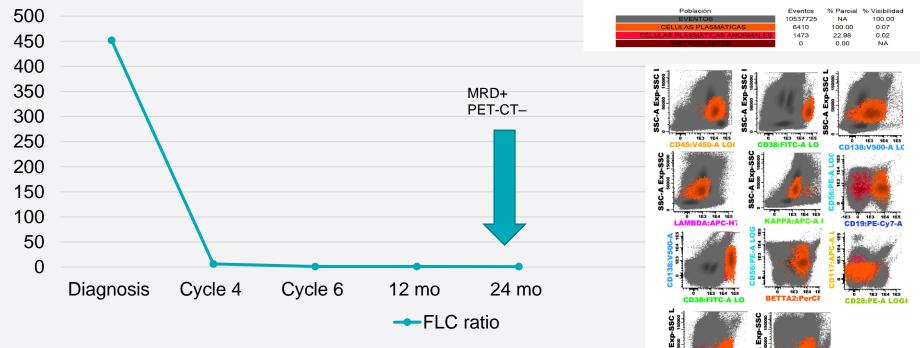

- CR, (FLC K/L: 1.05)
- MRD- (NGF, 107) and PET-CT negative
- > Maintenance: lenalidomide


CD45-,CD38+,CD138+/-heterogéneo,CD56+,CD19-,Beta2 microglobulina+,Kappa+,Lambda-,CD28-,CD81-,CD27+,CD117-

INTERPRETACIÓN El presente inmunofenotipo es compatible con Enfermedad mínima residual NO DETECTABLE (0.00%) (Sensibilidad 10 - 7)

Población	Eventos	% Parcial	% Visibilidad
EVENTOS	14,203,229	NA	100.00
CÉLULAS PLASMÁTICAS	0	0.00	NA

Evolution


INFORME DE ANÁLISIS

Siguiendo el protocolo de Euroflow para EMR de alta sensibilidad en Mieloma, se realiza el panel de discrasias de células plasmáticas obteniendo 10,537,725 eventos, identificando una población de 0.07%(6,410)de células plasmáticas de las cuales un 0.02% (1,473) con fenotipo anormal similar al inicial: CD45+débil,CD38+,CD138+/-heterogéneo,CD56+/-heterogéneo, CD19-,Beta2microglobulina+,Kappa+, Lambda-,CD28-,CD81+,CD27+,CD117-

INTERPRETACIÓN

El presente Inmunofenotipo es compatible con Enfermedad minima residual DETECTABLE (0.02%) (Sensibilidad 10 - 7) Se sugiere correlación citogenética.

Punto de corte para EMR de alta sensibilidad en MM: 0.001%

FLC ratio

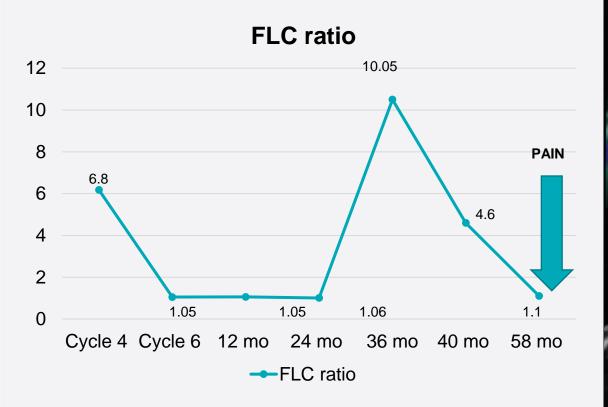
0 1E3 1E4 1E5

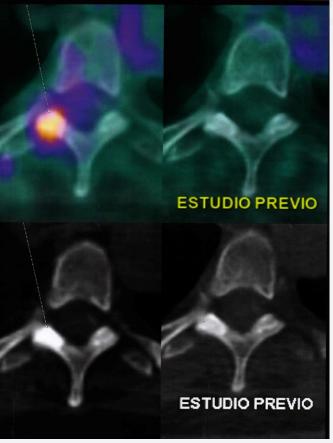
CD81:APC-H7-A

1E3 1E4 1E5

CD27:PerCP-Cy5

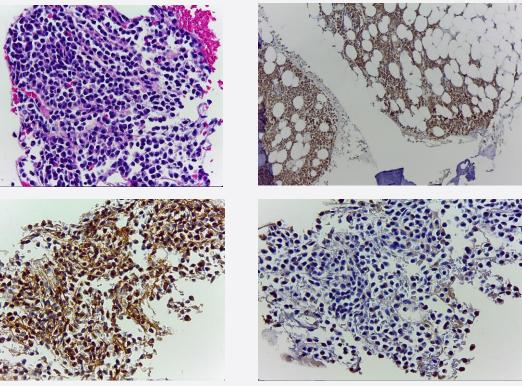
Evolution Ratio 10.5 Kappa 180 Lambda 17 **FLC** ratio 12 10 MRD+ 8 PET-CT-6.8 6 4 2 1.06 1.05 1.01 0 Cycle 4 Cycle 6 12 mo 24 mo 36 mo ---FLC ratio


First Relapse


> KRD

- 4 cycles: PR
- Toxicity: PE, grade 3 HAS, grade 1 neuropathy, grade 1 PHTN
- > Isatuximab-pomalidomide-dexamethasone (EAP)
 - sRC at cycle 4
 - FLC ratio 1.1
 - MRD- at cycle 8
- > Cycle 18
 - FLC ratio 1.16
 - Dorsal bone pain

Evolution


Global Multiple Myeloma Academy

Relapsed/Refractory

> FISH: 70% PC with TP53

- Nuc ish (*TP53* × 2) (15/50)
- Nuc ush (*TP53* × 1) (35/50)
- The test was performed on selected clonal plasma cells (CD138+, CD38+, CD19+, CD56+)

T5 biopsy

Kappa

Lambda

CD38+

Relapsed/Refractory

OS: 58 mo

ECOG 1 (just pain)

Previous treatment

- Daratumumab
- Bortezomib
- Thalidomide
- Carfilzomib
- Lenalidomide
- Isatuximab
- Pomalidomide

> What is the best treatment in this case?

- A. Include in clinical trial
- B. Belantamab mafodotin
- C. Selinexor-bortezomib-dexamethasone
- D. Bispecific antibody
- E. Allo-SCT (61 years old)
- F. CAR T-cell therapy

Discussion: Case 4

Case Discussants: Sofía Sánchez, MD + Jorge Vela-Ojeda, MD, PhD

Moderator: Rafael Fonseca, MD

APTITUDE HEALTH

Session Close – Audience Response Questions

Rafael Fonseca



What treatment belongs to the T-cell engagers category? [repeated question]

- 1. Melflufen
- 2. Belantamab
- 3. Ide-cel
- 4. Selinexor
- 5. Venetoclax

Which of the following combinations has not been tested in phase III clinical trials in RR MM? [repeated question]

- 1. Dara-Pd
- 2. Elotuzumab-venetoclax and dexamethasone
- 3. Bortezomib, pomalidomide, and dexamethasone
- 4. Bortezomib plus daratumumab and dexamethasone
- 5. Carfilzomib plus lenalidomide and dexamethasone

Which statements are true for the treatment of myeloma? [repeated question]

- A. There is a high rate of attrition (loss)
- B. Several drug trials show that 2 drugs can be as good as 3 in terms of efficacy
- C. Myeloma is a heterogeneous disease with increased rates of *p53* abnormalities with progression
- D. All of the above
- E. A and C

Thank You!

> Please complete the evaluation survey that will be sent to you via chat

- > The meeting recording and slides presented today will be shared on the www.globalmmacademy.com website
- > You will also receive a certificate of attendance via email by June 30

THANK YOU!

Global Multiple Myeloma Academy Emerging and Practical Concepts in Multiple Myeloma

THANK YOU FOR YOUR PARTICIPATION!

